Ergodic and Kinetic Properties of Hamiltonian Dynamical Systems
哈密顿动力系统的遍历和动力学性质
基本信息
- 批准号:09640472
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In order to elucidate the universal laws of Hamiltonian dynamical systems, we studied ergodic and kinetic properties of trajectories generated by complex phase space structures. For various Hamiltonian systems, phase space phenomena such as breakup of invariant tori and bifurcations of periodic trajectories were thoroughly studied with particular interest in their effects on the long-term behavior of trajectories for classical systems and on the energy level statistics for quantum systems. In particular, for many particle systems, we developed a kinetic theory of complex phenomena such as clustering motions, relaxation processes and anomoulous diffusion. In addition, we pursued the possibility to apply our theoretical results to real experiments in the optical laser systems, where Hamiltonian dynamical theory can be applicable.Main results are summarized as follows :(1) Fractal structures and phase transition phenomena in mixed Hamiltonian systemsUniversal scaling laws are revealed in the transition regime between tori and chaos. It is shown that many particle systems exhibit statistical distributions such as Weibull distribution and Log-Weibull distribution, which are consistent with the Arnold diffusion theory.(2)Universal properties of Hamiltonian systems violating the KAM conditionA new method is proposed to systematically investigate the phase space of Hamiltonian systems violating the KAM condition. Using this method, we succeed in analyzing the reconnection phenomena and accurately determining the critical threshold for global chaos. It is shown that the set of critical threshold constitutes a fractal.3) Quantum signatures of classical phase space phenomenaWe establish a systematic method to determine the Berry-Robnik parameter of energy level statistics for non-integrable billiard systems. On the basis of this method, we demonstrate that the classical bifurcation phenomena clearly effect the level statistics properties of the corresponding quantum systems.
为了阐明哈密顿动力学系统的普遍规律,我们研究了复杂相空间结构产生的轨道的遍历和动力学性质。对于不同的哈密顿系统,深入研究了不变环面破裂和周期轨道分叉等相空间现象,特别是它们对经典系统轨道的长期行为和量子系统能级统计的影响。特别是,对于许多粒子系统,我们发展了一种复杂现象的动力学理论,如团簇运动、弛豫过程和反常扩散。此外,我们还探索了将我们的理论结果应用于可应用哈密顿动力学理论的光学激光系统的实际实验中的可能性。主要结果如下:(1)混合哈密顿系统中的分形结构和相变现象在环面和混沌之间的转变区域揭示了普遍的标度律。结果表明,许多粒子系统具有符合Arnold扩散理论的统计分布,如威布尔分布和对数威布尔分布。(2)违反KAM条件的哈密顿系统的普遍性质提出了一种新的方法来系统地研究违反KAM条件的哈密顿系统的相空间。利用这种方法,我们成功地分析了重联现象,并准确地确定了全局混沌的临界阈值。3)经典相空间现象的量子特征我们建立了一种确定不可积台球系统能级统计的Berry-Robnik参数的系统方法。在此基础上,我们证明了经典分叉现象对相应量子系统的能级统计性质有明显的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Kurosaki and Y.Aizawa: "Breakup Process and Geometrical Structure of High-Dimensional KAM tori" Progress of Theoretical Physics. vol.98. 783-793 (1997)
S.Kurosaki和Y.Aizawa:“高维KAM tori的破裂过程和几何结构”理论物理进展。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
原山卓久, 中村勝弘(共著): "量子カオス-量子ビリヤードを舞台にして-"培風館. 183 (2000)
Takuhisa Harayama、Katsuhiro Nakamura(合著者):“量子混沌 - 使用量子台球作为舞台”Baifukan 183 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H. Makino, T. Harayama and Y. Aizawa: "Effects of Bifurcations on the Energy Level Statistics for Oval Billiards"Physical Review E. 59. 4026-4035 (1999)
H. Makino、T. Harayama 和 Y. Aizawa:“分岔对椭圆形台球能级统计的影响”物理评论 E. 59. 4026-4035 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Makino, T.Harayama, Y.Aizawa: "Effects of Bifurcations on the Energy Level Statistics for Oval Billiards"Physical Review E. Vol.59. 4026-4040 (1999)
H.Makino、T.Harayama、Y.Aizawa:“分岔对椭圆形台球能级统计的影响”Physical Review E. Vol.59。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Aizawa: "Comments on Non-stationary Chaos"Chaos, Solitons and Fractals. Vol.11. 263-268 (2000)
Y.Aizawa:《非平稳混沌评论》混沌、孤子和分形。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AIZAWA Yoji其他文献
AIZAWA Yoji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AIZAWA Yoji', 18)}}的其他基金
Multi ergodicity in nearly integrable Hamiltonian systems and large deviation properties of infinite ergodic systems
近可积哈密顿系统的多重遍历性和无限遍历系统的大偏差性质
- 批准号:
21540399 - 财政年份:2009
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ergodicity and Transport Phenomena in Hamiltonian Systems under Non-equilibrium Conditions
非平衡条件下哈密顿系统的遍历性和输运现象
- 批准号:
18540383 - 财政年份:2006
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Universal aspects of Malti-ergodic phase space structure in many body hamiltonian dynamics
多体哈密顿动力学中马尔蒂遍历相空间结构的普遍方面
- 批准号:
15540376 - 财政年份:2003
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The origin of 1/f spectrum fluctuation in the hamiltonian dynamics for lattice systems.
晶格系统哈密顿动力学中 1/f 谱涨落的起源。
- 批准号:
06640515 - 财政年份:1994
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RESEARCH ON ERGODIC PROBLEMS IN HAMILTONIAN DYNAMICS
哈密顿动力学中各态历经问题的研究
- 批准号:
02640296 - 财政年份:1990
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似国自然基金
JOSEPHSONJUNCTION的动力学与紊动(CHAOS)现象
- 批准号:18670411
- 批准年份:1986
- 资助金额:0.55 万元
- 项目类别:面上项目
相似海外基金
Coherent Structure, Chaos, and Turbulence in Fluid Mechanics
流体力学中的相干结构、混沌和湍流
- 批准号:
2348453 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Investigation of synchronized phenomena and its application to chaos control in a laboratory plasma
同步现象的研究及其在实验室等离子体混沌控制中的应用
- 批准号:
23K03355 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast Chaos Detection through Data-Driven Approach
通过数据驱动方法进行快速混沌检测
- 批准号:
23K16963 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Random matrices from quantum chaos to the Riemann zeta function.
会议:从量子混沌到黎曼 zeta 函数的随机矩阵。
- 批准号:
2306332 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
CloudEnergyBalance: Simple climate models to quantify impact of large-scale cloudiness & deterministic chaos on climatic variability & tipping points
CloudEnergyBalance:用于量化大规模多云影响的简单气候模型
- 批准号:
EP/Y01653X/1 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Fellowship
Wasserstein-Type Gradient Flow via Propagation by Chaos for a Continuous Formulation of a Shallow Neural Network
通过混沌传播的 Wasserstein 型梯度流用于连续制定浅层神经网络
- 批准号:
2879236 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Studentship
Development of an optimization method using chaos for spin devices
开发利用混沌的自旋器件优化方法
- 批准号:
23KJ0331 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Moments of character sums and of the Riemann zeta function via multiplicative chaos
乘性混沌的特征和矩和黎曼 zeta 函数矩
- 批准号:
EP/V055755/1 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Research Grant