Completely integrable systema and representation theory of infinite dimen-sional algebras
无限维代数的完全可积系统和表示论
基本信息
- 批准号:09440014
- 负责人:
- 金额:$ 9.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In a collaboration with Professor S.S.Roan of Academia Sinica (Taipei), the head investigator of this research project has determined the structure of quotient of the Onsager algebra by ideals of it in the case when the quotients do not have central elements. This almost determines the structure of quotients of the Onsager algebra. In particular the case not determined in the previous researches are fixed by finding a relation with the project of classifying nilpotent Lie algebras by classifying the ideals in the nilpotent part of Kac-Moody Lie algebras. To find such relationship computer algebra system on a workstation was very helpful and indispensable, especially in computing examples. The Onsager algebra can be viewed as a Lie algebra deformation of the nilpotent part of the affine Lie algebra A^<(1)>_1. If we identify A^<(1)>_1 with a central extension of the current algebra, the Onsager algebra is a fixed point set of an involution. By using this presentation we can study the structures of ideals of the Onsager algebra. In order to fix the remining case, we used the principal (twisted) realization of A^<(1)>_1. We think that this kind of principal realization will play some important role in the study of deformation of nilpotent parts of other affine Lie algebras in connection with conformal field theory. We are preparing manuscript on this result. Other investigators in this research project have obtained new results in the study of spectrum of one dimensional Schrodinger operator with a random potential, an identity involving Schur functions, positive solutions of sernilinear elliptic partial differential equations, classification of irreducible representations of vertex operator algebras related with free fermions, relationship of L operators in quantum inverse scattering method and Drinfeld's genarators in affine quantum enveloping algebras and other areas.
本研究项目的首席研究员与台北中央研究院的roan教授合作,在商没有中心元素的情况下,通过对商的理想确定了Onsager代数商的结构。这几乎决定了Onsager代数的商的结构。特别是通过对Kac-Moody李代数的幂零部分的理想进行分类,找到与幂零李代数分类方案的关系,解决了以往研究中未确定的情况。在计算机代数系统中找到这种关系是非常有用的,尤其是在计算实例中。Onsager代数可以看作是仿射李代数a ^<(1)>_1的幂零部分的李代数变形。如果我们用当前代数的中心扩展来识别A^<(1)>_1,则Onsager代数是一个对合的不动点集。利用这一表述,我们可以研究Onsager代数的理想结构。为了解决这个问题,我们使用了A^<(1)>_1的主(扭曲)实现。我们认为这种主实现将对其他仿射李代数的幂零部的变形与共形场论相联系的研究起到一定的作用。我们正在准备这一结果的手稿。本研究项目的其他研究者在一维随机势薛定谔算子的谱、涉及舒尔函数的恒等式、半线性椭圆型偏微分方程的正解、与自由费米子相关的顶点算子代数的不可约表示的分类、量子逆散射法中的L算子与仿射量子包络代数等领域的Drinfeld发生器的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Kawanaka: "A q-series identity involving Schur funcions and related topics" Oasaka J.Math.32. 157-176 (1999)
N.Kawanaka:“涉及 Schur 函数和相关主题的 q 级数恒等式”Oasaka J.Math.32。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
永友清和(C.Dong): "Representations of vertex operator algebra V^+_L for rank one lattice L" Comm.Math.Phys. (to appear).
Kiyokazu Nagatomo (C.Dong):“一级格 L 的顶点算子代数 V^+_L 的表示” Comm.Math.Phys(即将出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
厚地淳: "A Casorati-Weievslross theoven for holomorphic maps and imagiant o-fields of holomophic diffusions" Bull.des sci.Math.(発表予定).
Jun Atsushi:“用于全纯映射和全纯扩散的想象的 O 场的 Casorati-Weievslross theoven”Bull.des sci.Math.(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
鈴木貴(Y.Naito): "Radial symmetry of positive solutions for semilinear elliptic equations on the unit ball in TR^m" Funkcial Ekinc.41. 215-234 (1998)
Takashi Suzuki (Y.Naito):“TR^m 中单位球上半线性椭圆方程正解的径向对称性”Funkcial Ekinc.41 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
永友清和(松尾〓): "Axioms for Vertex Algebra and the locality of Quantum Fields (MSJ Memoirs 4)" 日本数学会, 110 (1999)
Kiyokazu Nagatomo(松尾):“顶点代数公理和量子场局部性(MSJ Memoirs 4)”日本数学会,110(1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DATE Etsuro其他文献
DATE Etsuro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DATE Etsuro', 18)}}的其他基金
A study of commutative rings of differential operators in completely integrable models and their eigenfunctions
完全可积模型中微分算子交换环及其本征函数的研究
- 批准号:
17340046 - 财政年份:2005
- 资助金额:
$ 9.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Cohomology of nilpotent lie algebras
幂零李代数的上同调
- 批准号:
347475-2007 - 财政年份:2007
- 资助金额:
$ 9.15万 - 项目类别:
Postgraduate Scholarships - Master's
The Algebraic Structure of Square Integrable Nilpotent Lie Algebras
平方可积幂零李代数的代数结构
- 批准号:
7804898 - 财政年份:1978
- 资助金额:
$ 9.15万 - 项目类别:
Standard Grant