A novel Multi-Agent Model with Adversarial Mobility Learning for Epidemic Simulation at the Community Level

一种新颖的具有对抗性移动学习的多智能体模型,用于社区层面的流行病模拟

基本信息

  • 批准号:
    22K11918
  • 负责人:
  • 金额:
    $ 2.75万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2022
  • 资助国家:
    日本
  • 起止时间:
    2022-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

In this year, first we performed a survey on agent-based models of disease spread simulator, understanding the different approaches for the simulation of COVID-19 disease around the world.Based on this survey, we have designed and implemented a first version of the Community Level Epidemic Simulator (CES), and named it Koudou. This simulator reproduces the campus of the University of Tsukuba and its neighborhood. It represents agents as workers and students who go around the city for their day-to-day activities. The simulation tracks the spread of an airborne disease like COVID-19 indoors and outdoors, and takes into account variation on mask usage. The simulation also reproduces the evacuation from a large earthquake, and measures the differences in disease spread based on gatherings in evacuation centers.We have also developed an "Intelligent City Planning Model (ICPM)". The ICPM uses uses Machine Learning to understand and integrate demographic and geographical data, Land Use and Transport (LUTI), to generate a virtual city. We demonstrated that the ICPM can learn from real world urban data and re-create realistic designs of cities based on the needs of simulated agents. This is a first step for learning advanced mobility models for agents in simulation.Both works above were accepted for presentation at the International ALIFE 2023 conference, and have been made available to the public as open-source projects.
今年,我们首先对基于Agent的疾病传播模拟器模型进行了调查,了解了世界各地模拟COVID-19疾病的不同方法。在此基础上,我们设计并实现了社区级流行病模拟器(CES)的第一个版本,并将其命名为Koudou。这个模拟器再现了筑波大学的校园及其周边地区。它代表的是在城市里进行日常活动的工人和学生。模拟跟踪空气传播的疾病,如COVID-19室内和室外的传播,并考虑到口罩使用的变化。此外,模拟再现了大地震时的疏散情况,并根据疏散中心的聚集情况,计算了疾病传播的差异。开发了“智能城市规划模型(ICPM)"。ICPM使用机器学习来理解和整合人口和地理数据,土地使用和交通(LUTI),以生成一个虚拟城市。我们证明了ICPM可以从真实的世界城市数据中学习,并根据模拟代理的需求重新创建现实的城市设计。这是在模拟中学习智能体高级移动模型的第一步。上述两项工作都被接受在国际ALIFE 2023会议上发表,并已作为开源项目向公众提供。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
City Generation Model Open Source Page
城市生成模型开源页面
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Multi-Agent City Expansion With Land Use and Transport
土地利用和交通的多主体城市扩张
Johns Hopkins University(米国)
约翰·霍普金斯大学(美国)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Community Epidemic Simulator Open Source Page
社区流行病模拟器开源页面
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Simulating Disease Spread During Disaster Scenarios
模拟灾难场景中的疾病传播
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aranha Claus其他文献

Challenges and Main Results of the Automated Negotiating Agents Competition (ANAC) 2019
2019 年自动谈判代理竞赛 (ANAC) 的挑战和主要结果
  • DOI:
    10.1007/978-3-030-66412-1_23
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aydogan Reyhan;Baarslag Tim;Fujita Katsuhide;Mell Johnathan;Gratch Jonathan;de Jonge Dave;Mohammad Yasser;Nakadai Shinji;Morinaga Satoshi;Osawa Hirotaka;Aranha Claus;Jonker Catholijn M.
  • 通讯作者:
    Jonker Catholijn M.

Aranha Claus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Continuing Grant
CAREER: Foundations of Scalable and Resilient Distributed Real-Time Decision Making in Open Multi-Agent Systems
职业:开放多代理系统中可扩展和弹性分布式实时决策的基础
  • 批准号:
    2339509
  • 财政年份:
    2024
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Continuing Grant
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
  • 批准号:
    2239410
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Continuing Grant
CAREER: Reinforcement Learning-Based Control of Heterogeneous Multi-Agent Systems in Structured Environments: Algorithms and Complexity
职业:结构化环境中异构多智能体系统的基于强化学习的控制:算法和复杂性
  • 批准号:
    2237830
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: Distributed Bilevel Optimization in Multi-Agent Systems
协作研究:多智能体系统中的分布式双层优化
  • 批准号:
    2326592
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Distributed Bilevel Optimization in Multi-Agent Systems
协作研究:多智能体系统中的分布式双层优化
  • 批准号:
    2326591
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Standard Grant
Resilient distributed algorithms for multi-agent systems
多智能体系统的弹性分布式算法
  • 批准号:
    22KF0137
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Intelligent Coordination for Multi-Agent Systems
多智能体系统的智能协调
  • 批准号:
    RGPIN-2020-06540
  • 财政年份:
    2022
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Toward Hierarchical Game Theory and Hybrid Learning Framework for Safe, Efficient Large-scale Multi-agent Systems
职业:面向安全、高效的大规模多智能体系统的分层博弈论和混合学习框架
  • 批准号:
    2144646
  • 财政年份:
    2022
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanical Communication for Multi-agent Systems
协作研究:多智能体系统的机械通信
  • 批准号:
    2140036
  • 财政年份:
    2022
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了