Collaborative Research: Distributed Bilevel Optimization in Multi-Agent Systems
协作研究:多智能体系统中的分布式双层优化
基本信息
- 批准号:2326591
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Bilevel optimization (BO) is a fast growing research area that finds many important applications in different fields ranging from machine learning, signal processing, communication, optimal control, energy to power systems. However, most existing research on BO has been focusing on algorithms in single-agent system, while the modern applications in power system, communication and energy often require the problems to be solved in multi-agent distributed networks. This project aims to close this gap. Specifically, in this project, we will design new algorithms for solving BO over multi agent system in decentralized and federated settings. Convergence of the proposed algorithms will be established to provide theoretical foundations for them. The algorithms will be implemented in computer codes with user-friendly interface which will be made publicly available so that they can be used by researchers from other fields. The outcomes of this project are expected to provide new tools for solving challenging distributed BO problems in multi-agent systems arising from power systems, optimal control and communication networks, which will also benefit researchers from academia, government labs and industry. This project consists of three major thrusts: decentralized BO, federated BO, and distributed BO with consensus constraints. For decentralized BO, we will study decentralized single-loop first-order algorithms when the lower-level problem admits unique solution, and decentralized value-function-based methods when the lower-level problem admits multiple solutions. We will also study different ways to accelerate algorithms for decentralized BO. For federated BO, we will design algorithms that can achieve linear speedup for problems with heterogeneous data. We will also study strategies to improve the resilience of federated BO to system-level heterogeneity, which is due to different system capabilities such as varying storage capacities and computing power. In the last thrust, we study distributed algorithms for BO with explicit consensus constraints. Since the constraints are linear equalities, we plan to study the alternating direction method of multipliers (ADMM) for solving this problem. Specifically, we will investigate the possibilities of decentralized ADMM and federated ADMM for distributed stochastic BO in multi-agent systems. Moreover, we will study new applications of distributed BO in power control and hyperparameter learning in wireless communication networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
双层优化(BO)是一个快速发展的研究领域,在机器学习、信号处理、通信、最优控制、能源和电力系统等不同领域有许多重要的应用。然而,现有的BO研究大多集中在单Agent系统中的算法,而现代电力系统、通信和能源等领域的应用往往需要在多Agent分布式网络中解决问题。该项目旨在缩小这一差距。具体来说,在这个项目中,我们将设计新的算法来解决BO多代理系统在分散和联邦设置。并证明了算法的收敛性,为算法的实现提供了理论依据.这些算法将以具有用户友好界面的计算机代码实现,这些代码将公开提供,以便其他领域的研究人员可以使用。该项目的成果有望为解决电力系统、最优控制和通信网络中多智能体系统中具有挑战性的分布式BO问题提供新的工具,这也将使学术界、政府实验室和工业界的研究人员受益。该项目包括三个主要目标:去中心化BO、联邦BO和带有共识约束的分布式BO。对于分散BO,我们将研究分散单循环一阶算法时,低层问题承认唯一的解决方案,和分散的价值函数为基础的方法时,低层问题承认多个解决方案。我们还将研究加速分散BO算法的不同方法。对于联邦BO,我们将设计算法来实现异构数据问题的线性加速。我们还将研究提高联邦BO对系统级异构性的弹性的策略,这是由于不同的系统功能,如不同的存储容量和计算能力。在最后的推力,我们研究了分布式算法BO明确的共识约束。由于约束条件是线性等式,我们计划研究交替方向乘子法(ADMM)解决这个问题。具体来说,我们将调查的可能性,分散ADMM和联邦ADMM的分布式随机BO多智能体系统。此外,我们将研究分布式BO在无线通信网络中的功率控制和超参数学习方面的新应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shiqian Ma其他文献
Low-M-Rank Tensor Completion and Robust Tensor PCA
低 M 阶张量补全和鲁棒张量 PCA
- DOI:
10.1109/jstsp.2018.2873144 - 发表时间:
2015-01 - 期刊:
- 影响因子:7.5
- 作者:
Bo Jiang;Shiqian Ma;Shuzhong Zhang - 通讯作者:
Shuzhong Zhang
求解随机非线性规划问题的基于随机近似的罚函数方法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:2
- 作者:
Xiao Wang;Shiqian Ma;Yaxiang Yuan - 通讯作者:
Yaxiang Yuan
Conv-TasSAN: Separative Adversarial Network Based on Conv-TasNet
Conv-TasSAN:基于Conv-TasNet的分离对抗网络
- DOI:
10.21437/interspeech.2020-2371 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Chengyun Deng;Yi Zhang;Shiqian Ma;Yongtao Sha;Hui Song;Xiangang Li - 通讯作者:
Xiangang Li
带先验约束的地表参数提取的有效反演方法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
杨华;王锦地;李小文;王彦飞;Shiqian Ma - 通讯作者:
Shiqian Ma
Applications of gauge duality in robust principal component analysis and semidefinite programming
规范对偶性在鲁棒主成分分析和半定规划中的应用
- DOI:
10.1007/s11425-016-0312-1 - 发表时间:
2016-01 - 期刊:
- 影响因子:0
- 作者:
Shiqian Ma;Junfeng Yang - 通讯作者:
Junfeng Yang
Shiqian Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shiqian Ma', 18)}}的其他基金
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
- 批准号:
2311275 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: New Theory and Applications of Non-smooth and Non-Lipschitz Riemannian Optimization
合作研究:CIF:小:非光滑和非Lipschitz黎曼优化的新理论和应用
- 批准号:
2308597 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: New Methods, Theory and Applications for Nonsmooth Manifold-Based Learning
协作研究:非平滑流形学习的新方法、理论和应用
- 批准号:
2243650 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: New Theory and Applications of Non-smooth and Non-Lipschitz Riemannian Optimization
合作研究:CIF:小:非光滑和非Lipschitz黎曼优化的新理论和应用
- 批准号:
2007797 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: New Methods, Theory and Applications for Nonsmooth Manifold-Based Learning
协作研究:非平滑流形学习的新方法、理论和应用
- 批准号:
1953210 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403313 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402837 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402835 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Technical Debt Management in Dynamic and Distributed Systems
合作研究:SHF:小型:动态和分布式系统中的技术债务管理
- 批准号:
2232720 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation:Medium: Modern Course Exemplars infused with Parallel and Distributed Computing for the Introductory Computing Course Sequence
协作研究:网络培训:实施:中:为入门计算课程序列注入并行和分布式计算的现代课程范例
- 批准号:
2321017 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant