THEORETICAL STUDY ON QUANTUM COUPLINGS BETWEEN CHARGE TRANSFER REACTION AND MEDIUM MODES

电荷转移反应与介质模式量子耦合的理论研究

基本信息

  • 批准号:
    08640660
  • 负责人:
  • 金额:
    $ 1.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 无数据
  • 项目状态:
    已结题

项目摘要

In this Scientific Research Program (C), notifying arbitrary nonlinearity of the solutesolvent interaction in the hamiltonian for chemical reacting systems in condensed phase, the final research purposes were to formulate the reaction rate for the charge transfer reactions and to compare the numerical results with the experimental ones. In the term of project, in order to estimate the vibrational nonadiabaticity in the classical-quantum coupled systems, we proposed a new quantization method based on an equation of motion and have executed numerical treatment for the concentration and dissipative transfer of the reactive energy due to nonequilibrium induced by the vibrational nonadiabaticity in the present systems.1. A dividing surface is newly proposed in a many-body phase space, over which the system trajectories do not recross if the saddle crossing motions are regarded as quasiperiodic. The recrossing dynamics of a four degrees-of-freedom Hamiltonian, a model of proton transfer reac … More tion of malonaldehyde, is investigated. It is shown that the apparent barrier recrossing motions observed over a naive dividing surface in the configurational space are 'rotated away' by a nonlinear canonical transformation, to noreturn single crossing motions over the new dividing surface defined in the phase space.2. A stochastic Path-integral (SPI) technique is explored. It is shown that this technique enables the direct computation of the transition amplitude with a finite space-time range, by generating a set of classical paths subject to simultaneous stochastic differential equations.The numerical values of the Boltzmann matrix elements for a harmonic potential are in good agreement with the analytical ones. Within the quantum TS theory, the flux-flux autocorrelation function is also evaluated at 630K for the H+H_2 exchange reaction and is found to give a satisfactory agreement with the previous studies. To appraise the influence of the dimensionality, both 1-dimensional Eckart potential and a full 3D LSTH potential calculations have been perfomed. The calculated values of the Boltzmann matrix elements for the collinear and the full 3D cases are found to deviate slightly each other in the lower temperature range. The 3D thermal rate constant becomes in very good agreement with the previous one. Less
在这项科学研究计划(C)中,指出了凝聚相化学反应体系的哈密顿中溶质-溶剂相互作用的任意非线性,最终研究目的是制定电荷转移反应的反应速率,并将数值结果与实验结果进行比较。在项目期间,为了估计经典量子耦合系统中的振动非绝热性,我们提出了一种基于运动方程的新的量化方法,并对当前系统中振动非绝热性引起的非平衡引起的无功能量的集中和耗散传递进行了数值处理。在多体相空间中新提出了一个分界面,如果鞍座交叉运动被视为准周期,则系统轨迹不会在该分界面上重新交叉。研究了四自由度哈密顿量的重交叉动力学,这是一种丙二醛的质子转移反应模型。结果表明,在构型空间中的原始分界面上观察到的表观势垒重穿越运动被非线性正则变换“旋转走”,从而不再在相空间中定义的新分界面上返回单交叉运动。 2.探索了随机路径积分(SPI)技术。结果表明,该技术通过生成一组受联立随机微分方程影响的经典路径,可以直接计算有限时空范围内的跃迁幅度。谐波势的玻尔兹曼矩阵元素的数值与解析值非常一致。在量子 TS 理论中,还对 H+H_2 交换反应在 630K 下的通量-通量自相关函数进行了评估,结果与之前的研究结果令人满意。为了评估维度的影响,进行了一维 Eckart 势和完整的 3D LSTH 势计算。发现共线和全 3D 情况下玻尔兹曼矩阵元素的计算值在较低温度范围内彼此略有偏差。 3D 热速率常数与前一个非常一致。较少的

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Masataka Nagaoka: "Transition State Optimization on Free Energy Surface:Toward Solution Chemical Reaction Ergodography" International Journal of Quantum Chemistry. (印刷中). (1998)
Masataka Nagaoka:“自由能表面的过渡态优化:走向溶液化学反应 Ergodography”国际量子化学杂志(1998 年出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Masataka Nagaoka: Potential Energy Function for Intramolecular Proton Trasfer Reaction of Glycine in Aqueous Solution. Journal of Physical Chemistry. 1998 (102)
Masataka Nagaoka:水溶液中甘氨酸分子内质子转移反应的势能函数。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Masataka Nagaoka: "A dividing Surface free from α Barrier Recrossing Motion in Many-Body Systems" Chemical Physics Letters. 265. 91-98 (1997)
Masataka Nagaoka:“多体系统中不受 α 势垒重新交叉运动影响的分割表面”《化学物理快报》265. 91-98 (1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mistake Nagaoka: "Chemical Reactions in Condensed Phase and Stochastic Numerical Analyzes- - -Langevin Equation in Complex Time Stochastic Quantization- - -" Surikaiseki-Kenkyusho Kokyuroku. 1032. (1998)
错误 Nagaoka:“凝聚相中的化学反应和随机数值分析 - - -复杂时间随机量化中的朗之万方程 - - -” Surikaiseki-Kenkyusho Kokyuroku。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mistake Nagaoka, Katsuhiro Suenobu and Tokio Yamabe: "On the Hydropnium Ion Catalyzed Mechanizum in Vinyl Alcohol-Acetaldehyde Isomerization : Ab inition Molecular Orbital Theory and Monte Carlo Simulation" Journal of American Chemical Society. 119. 8023-
Mistake Nagaoka、Katsuhiro Suenobu 和 Tokio Yamabe:“On the Hydropnium Ion Catalyzed Mechanizum in VinylAlcohol-Acetogenic Isomerization:A inition 分子轨道理论和蒙特卡洛模拟”美国化学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAGAOKA Mistake其他文献

NAGAOKA Mistake的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Speech Processing Based on Deep Gaussian Process With Stochastic Differential Equation Layers
基于随机微分方程层深度高斯过程的语音处理
  • 批准号:
    21K11955
  • 财政年份:
    2021
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Training Neural Networks to Discover Stochastic Differential Equation Based Models
训练神经网络以发现基于随机微分方程的模型
  • 批准号:
    2277653
  • 财政年份:
    2019
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Studentship
Propose and demonstrate the regularized recursive estimation for stochastic differential equation
提出并论证了随机微分方程的正则化递归估计
  • 批准号:
    18K18012
  • 财政年份:
    2018
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Interdisciplinary research in mathematical/data science and simulation science for stochastic differential equation models
随机微分方程模型的数学/数据科学和模拟科学的跨学科研究
  • 批准号:
    17H01100
  • 财政年份:
    2017
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Backward stochastic differential equation and nonlinear stochastic integration
后向随机微分方程和非线性随机积分
  • 批准号:
    17K05297
  • 财政年份:
    2017
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RUI: Efficient Adaptive Backward Stochastic Differential Equation Methods for Nonlinear Filtering Problems
RUI:解决非线性滤波问题的高效自适应后向随机微分方程方法
  • 批准号:
    1720222
  • 财政年份:
    2017
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Continuing Grant
Stochastic differential equation and random field theory applied to waves in random media
随机微分方程和随机场论应用于随机介质中的波
  • 批准号:
    312798-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Discovery Grants Program - Individual
Description of light and tera-hertz wave quantum-mechanical receiver circuits by nonlinear stochastic differential equation and building their circuit simulator models
通过非线性随机微分方程描述光和太赫兹波量子力学接收器电路并建立其电路模拟器模型
  • 批准号:
    15K06075
  • 财政年份:
    2015
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic differential equation and random field theory applied to waves in random media
随机微分方程和随机场论应用于随机介质中的波
  • 批准号:
    312798-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic differential equation and random field theory applied to waves in random media
随机微分方程和随机场论应用于随机介质中的波
  • 批准号:
    312798-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了