Training Neural Networks to Discover Stochastic Differential Equation Based Models
训练神经网络以发现基于随机微分方程的模型
基本信息
- 批准号:2277653
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Differential equations are probably the most important tool on a mathematical modeller's workbench. The enormous variety of phenomena which have been successfully modelled using these types of equations is quite astounding - many of the fundamental laws of physics and chemistry are formulated as differential equations. Many complex systems in biology and economics too are modelled this way. In recent times, neural networks have become an increasingly powerful and popular method for creating models directly from data, without requiring the user to have an understanding of the underlying processes involved to build a powerful predictive model. These two modelling methods are now being researched together - the idea is to train neural networks to discover good differential equation-based models from data. However, differential equations have their limitations in what types of dynamics they can effectively model. Phenomenon such as financial markets and many biological processes are not well modelled using this technique as they display many sharp changes due to random perturbations which differential equations cannot express. A typical family of methods for modelling these phenomena, closely related to the differential equations discussed above, are stochastic differential equations. In the same way that neural networks can be trained on data to produce differential equation models, similarly, these stochastic models can be discovered by neural networks. However, some of the tricks that are used to make training these neural networks efficient for differential equations are not easy to transfer to the case of stochastic differential equations. In this project, we will be exploring what the most efficient and robust methods for training neural networks to discover stochastic differential equation-based models from data are. This has many applications including modelling financial markets and biological processes.
微分方程可能是数学建模器工作台上最重要的工具。成功使用这些类型的方程式成功建模的各种现象非常令人震惊 - 许多物理和化学的基本定律被表述为微分方程。以这种方式建模了许多生物学和经济学中的复杂系统。近来,神经网络已成为一种直接从数据创建模型的越来越强大且流行的方法,而无需用户了解涉及的基础过程以构建强大的预测模型。现在正在研究这两种建模方法 - 想法是训练神经网络,从数据中发现基于微分方程的良好方程模型。但是,微分方程在他们可以有效建模的哪种动力学类型上存在局限性。像金融市场和许多生物过程之类的现象无法使用此技术对它们进行建模,因为它们由于差分方程无法表达的随机扰动而显示出许多急剧变化。与上面讨论的微分方程密切相关的这些现象建模的典型方法家族是随机微分方程。就像可以在数据中培训神经网络以产生微分方程模型的方式一样,这些随机模型也可以通过神经网络发现。但是,用于训练这些神经网络有效地用于微分方程的某些技巧并不容易转移到随机微分方程的情况下。在这个项目中,我们将探讨从数据中发现基于随机微分方程的模型的神经网络最有效,最强大的方法。这有许多应用程序,包括建模金融市场和生物流程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Metal nanoparticles entrapped in metal matrices.
- DOI:
10.1039/d1na00315a - 发表时间:
2021-07-27 - 期刊:
- 影响因子:4.7
- 作者:
- 通讯作者:
Stunting as a Risk Factor of Soil-Transmitted Helminthiasis in Children: A Literature Review.
- DOI:
10.1155/2022/8929025 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Aspirin use is associated with decreased inpatient mortality in patients with COVID-19: A meta-analysis.
- DOI:
10.1016/j.ahjo.2022.100191 - 发表时间:
2022-08 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ged?chtnis und Wissenserwerb [Memory and knowledge acquisition]
- DOI:
10.1007/978-3-662-55754-9_2 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A Holistic Evaluation of CO2 Equivalent Greenhouse Gas Emissions from Compost Reactors with Aeration and Calcium Superphosphate Addition
曝气和添加过磷酸钙的堆肥反应器二氧化碳当量温室气体排放的整体评估
- DOI:
10.3969/j.issn.1674-764x.2010.02.010 - 发表时间:
2010-06 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
深度神经网络训练动态空间约简的理论、方法与应用
- 批准号:62376155
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
可验证、高效率的图神经网络安全训练方法研究
- 批准号:62302308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于图神经网络的大规模生物知识图谱预训练方法研究
- 批准号:62302100
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于忆阻逻辑的三值忆阻神经网络原位训练架构设计及优化
- 批准号:62374047
- 批准年份:2023
- 资助金额:55 万元
- 项目类别:面上项目
感觉运动训练对慢性非特异性腰痛的疗效及脑网络机制
- 批准号:82372578
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Dissociating respiratory depression and analgesia via a data-driven model of interacting respiratory and pain networks
通过呼吸和疼痛网络相互作用的数据驱动模型分离呼吸抑制和镇痛
- 批准号:
10644300 - 财政年份:2023
- 资助金额:
-- - 项目类别:
CRCNS: Identifying principles of auditory cortical organization with machine learning
CRCNS:通过机器学习识别听觉皮层组织的原理
- 批准号:
10830506 - 财政年份:2023
- 资助金额:
-- - 项目类别:
High-performance deep neural networks for medical image analysis
用于医学图像分析的高性能深度神经网络
- 批准号:
10723553 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Imaging Epilepsy Sources with Biophysically Constrained Deep Neural Networks
使用生物物理约束的深度神经网络对癫痫源进行成像
- 批准号:
10655833 - 财政年份:2023
- 资助金额:
-- - 项目类别: