Spontaneous formation of singularities through critical collapse
通过临界崩溃自发形成奇点
基本信息
- 批准号:1412140
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is devoted to the study of mathematical nature of phenomena of collapse that arise in a variety of biological and physical systems. For example, collapse may occur when a powerful laser beam enters a transparent medium, such as usual glass. Interaction of the medium with the laser beam results in self-focusing when the intense light creates an effective lens inside the medium and amplifies itself during propagation until the singularity of the light amplitude is reached. Mathematically a singularity means that the corresponding mathematical solution approaches infinity. Qualitatively similar collapse phenomena occur in hydrodynamics as well as in the bacterial growth (for example, for E. Coli). In the latter case, communications between bacteria (through a chemical substance called chemoattractant) cause spontaneous aggregation of the bacterial colony to a very high (almost singular) bacterial density. Solutions of the corresponding nonlinear systems of partial differential equations that model phenomena with collapse experience spontaneous formation of singularities in finite time (blow-up). Blow-up is often accompanied by a dramatic contraction of the spatial extent of a solution, hence the term "collapse." Near the singularity point there is a qualitative change in underlying nonlinear phenomena; the initial mathematical models lose their applicability and other mechanisms become more important, such as optical breakdown and formation of plasma in optical media, or bacterial crowding and formation of multicellular organisms from the bacterial colony.This research will focus on phenomena of collapse in the Nonlinear Schrödinger equation (NLSE), Keller-Segel equation (KSE) and Davey-Stewartson equation (DSE) which are archetypal equations to study finite time singularities in the critical dimension two. These equations are among most universal and widespread equations in nonlinear science with numerous applications in nonlinear optics, hydrodynamics and biology. The need in understanding collapse became especially pressing since the advent of lasers in early 60s. More than 50 years of research produced well-established collapse theories for NLSE and KSE. However, until recently it remained a puzzle why these theoretical results were never confirmed by either direct simulations or in experiments. The explanation is that the existing theories required unrealistically large amplitudes for their applicability. This project will develop a detailed theory of collapse scaling and collapse regularization in NLSE and KSE for the realistic amplitudes. The principal investigator will also develop a DSE collapse scaling theory, which has been lacking for many years. The effort will be made to make the theory a practical tool for applications. Both perturbative and nonperturbative approaches will be used, as well as matched asymptotic techniques and extensive supercomputing. Diverse applications of NLSE, KSE and DSE will promote cross-fertilization of ideas across the fields of nonlinear optics, hydrodynamics, Bose-Einstein condensation and biology.
该项目致力于研究在各种生物和物理系统中出现的崩溃现象的数学性质。例如,当强大的激光束进入透明介质(例如通常的玻璃)时,可能会崩溃。当强烈的光在传播过程中产生有效的镜头,直到达到光放大器的奇异性,培养基与激光束的相互作用会导致自我关注。从数学上讲,奇异性意味着相应的数学解决方案接近无穷大。定性相似的崩溃现象发生在流体动力学和细菌生长中(例如,对于大肠杆菌)。在后来的情况下,细菌(通过称为化学吸引剂的化学物质)之间的通信导致细菌菌落的赞助聚集至非常高(几乎是单数)的细菌密度。偏微分方程的相应非线性系统的解决方案,以有限时间(爆炸)在有限时间内对现象进行模拟现象的赞助。爆炸通常是通过解决方案的空间范围的巨大收缩来实现的,因此“崩溃”一词。在奇异点附近,基本的非线性现象存在质量变化。最初的数学模型失去了其适用性和其他机制变得更加重要,例如光学介质中的光学分解和血浆形成,或细菌拥挤和从细菌群体中形成多细胞生物的细菌,这将重点介绍非线性schrödinger方程(NLSE),KEELERETION(NLSE)的崩溃现象(KSE SSEGERITAND)(KSEGELSENTION)(KSEGELSEGERATION)(KSEGELSEN), (DSE)是研究临界维度二的有限时间奇点的原型方程。这些方程是非线性科学中最普遍和宽度的方程之一,在非线性光学,流体动力学和生物学中有许多应用。自60年代初激光前进以来,理解崩溃的需求变得尤为紧迫。超过50年的研究为NLSE和KSE产生了良好的崩溃理论。但是,直到最近,直接模拟或实验中都从未证实这些理论结果的原因。解释是,现有的理论需要不切实际的大放大器才能适用。该项目将开发出NLSE和KSE中崩溃缩放和崩溃调节的详细理论,用于现实的放大器。主要研究者还将开发出多年来缺乏的DSE崩溃理论。将努力使该理论成为应用程序的实用工具。将使用扰动和非扰动方法,以及匹配的不对称技术和广泛的超级计算。 NLSE,KSE和DSE的各种应用将促进非线性光学,流体动力学,Bose-Einstein凝结和生物学领域的思想的交叉侵入。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Turbulence Appearance and Nonappearance in Thin Fluid Layers
- DOI:10.1103/physrevlett.121.164501
- 发表时间:2018-10-16
- 期刊:
- 影响因子:8.6
- 作者:Falkovich, Gregory;Vladimirova, Natalia
- 通讯作者:Vladimirova, Natalia
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pavel Lushnikov其他文献
Pavel Lushnikov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pavel Lushnikov', 18)}}的其他基金
Motion of Complex Singularities and Integrability in Surface Dynamics
表面动力学中复杂奇点的运动和可积性
- 批准号:
1814619 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Vlasov Multi-Dimensional Simulation of Langmuir Wave Collapse and Stimulated Raman Scatter in the Fluid-Kinetic Transition Regime
合作研究:流体动力学转变体系中 Langmuir 波崩溃和受激拉曼散射的 Vlasov 多维模拟
- 批准号:
1004118 - 财政年份:2010
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: Strong Turbulence from Singular Collapses in Nonlinear Schroedinger Type of Equations
合作研究:非线性薛定谔方程中奇异塌陷引起的强湍流
- 批准号:
0807131 - 财政年份:2008
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似国自然基金
华南夏季夜间高温事件的特征和形成机制
- 批准号:42375028
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于群体基因组学解析蒙古高原特有属沙芥属物种形成及适应性演化
- 批准号:32360751
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
OATPs介导Aβ/p-Tau转运对阿尔茨海默病病理机制形成及治疗影响的研究
- 批准号:82360734
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
孤子内波环境下浅海混响中的杂波形成机理及特征研究
- 批准号:12374427
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
肠道病毒下调去整合素金属蛋白酶15促进病毒复制膜形成的机制研究
- 批准号:82302502
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Shock formation, shock development, and the propagation of singularities in fluid dynamics
合作研究:激波形成、激波发展以及流体动力学中奇点的传播
- 批准号:
2307680 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: Shock formation, shock development, and the propagation of singularities in fluid dynamics
合作研究:激波形成、激波发展以及流体动力学中奇点的传播
- 批准号:
2307681 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Analysis of formation and extinction of singularities in nonlinear parabolic equations
非线性抛物方程中奇点的形成和消失分析
- 批准号:
23K12998 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations
三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索
- 批准号:
2205590 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual