Spontaneous formation of singularities through critical collapse

通过临界崩溃自发形成奇点

基本信息

  • 批准号:
    1412140
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

This project is devoted to the study of mathematical nature of phenomena of collapse that arise in a variety of biological and physical systems. For example, collapse may occur when a powerful laser beam enters a transparent medium, such as usual glass. Interaction of the medium with the laser beam results in self-focusing when the intense light creates an effective lens inside the medium and amplifies itself during propagation until the singularity of the light amplitude is reached. Mathematically a singularity means that the corresponding mathematical solution approaches infinity. Qualitatively similar collapse phenomena occur in hydrodynamics as well as in the bacterial growth (for example, for E. Coli). In the latter case, communications between bacteria (through a chemical substance called chemoattractant) cause spontaneous aggregation of the bacterial colony to a very high (almost singular) bacterial density. Solutions of the corresponding nonlinear systems of partial differential equations that model phenomena with collapse experience spontaneous formation of singularities in finite time (blow-up). Blow-up is often accompanied by a dramatic contraction of the spatial extent of a solution, hence the term "collapse." Near the singularity point there is a qualitative change in underlying nonlinear phenomena; the initial mathematical models lose their applicability and other mechanisms become more important, such as optical breakdown and formation of plasma in optical media, or bacterial crowding and formation of multicellular organisms from the bacterial colony.This research will focus on phenomena of collapse in the Nonlinear Schrödinger equation (NLSE), Keller-Segel equation (KSE) and Davey-Stewartson equation (DSE) which are archetypal equations to study finite time singularities in the critical dimension two. These equations are among most universal and widespread equations in nonlinear science with numerous applications in nonlinear optics, hydrodynamics and biology. The need in understanding collapse became especially pressing since the advent of lasers in early 60s. More than 50 years of research produced well-established collapse theories for NLSE and KSE. However, until recently it remained a puzzle why these theoretical results were never confirmed by either direct simulations or in experiments. The explanation is that the existing theories required unrealistically large amplitudes for their applicability. This project will develop a detailed theory of collapse scaling and collapse regularization in NLSE and KSE for the realistic amplitudes. The principal investigator will also develop a DSE collapse scaling theory, which has been lacking for many years. The effort will be made to make the theory a practical tool for applications. Both perturbative and nonperturbative approaches will be used, as well as matched asymptotic techniques and extensive supercomputing. Diverse applications of NLSE, KSE and DSE will promote cross-fertilization of ideas across the fields of nonlinear optics, hydrodynamics, Bose-Einstein condensation and biology.
该项目致力于研究各种生物和物理系统中出现的崩溃现象的数学性质。例如,当强大的激光束进入透明介质(如普通玻璃)时,可能会发生塌陷。当强光在介质内产生有效的透镜并在传播期间放大自身直到达到光振幅的奇异性时,介质与激光束的相互作用导致自聚焦。在数学上,奇点意味着相应的数学解接近无穷大。 在流体动力学和细菌生长中也会出现类似的塌陷现象(例如,对于E。Coli)。在后一种情况下,细菌之间的通信(通过称为化学引诱物的化学物质)导致细菌菌落自发聚集到非常高(几乎单一)的细菌密度。相应的非线性偏微分方程系统的解,模型的现象与崩溃经验自发形成的奇点在有限的时间(爆破)。 爆破通常伴随着解的空间范围的急剧收缩,因此称为“坍缩”。“在奇点附近,潜在的非线性现象发生了质的变化;最初的数学模型失去了它们的适用性,其他机制变得更加重要,例如光学介质中的光学击穿和等离子体的形成,或者细菌拥挤和细菌菌落形成多细胞生物体。本研究将集中在非线性薛定谔方程(NLSE)中的崩溃现象,Keller-Segel方程(KSE)和Davey-Stewartson方程(DSE)是研究临界维2上有限时间奇异性的典型方程。这些方程是非线性科学中最普遍和最广泛的方程之一,在非线性光学、流体力学和生物学中有着广泛的应用。自60年代初激光问世以来,对坍缩的理解变得尤为迫切。50多年的研究为NLSE和KSE提供了完善的崩溃理论。然而,直到最近,为什么这些理论结果从未被直接模拟或实验证实,仍然是一个谜。解释是,现有的理论需要不切实际的大振幅才能适用。本计画将针对真实振幅,在NLSE和KSE中发展详细的崩塌缩放与崩塌规则化理论。首席研究员还将开发DSE崩溃缩放理论,这是多年来一直缺乏的。将努力使理论成为应用的实用工具。微扰和非微扰的方法将被使用,以及匹配的渐近技术和广泛的超级计算。NLSE、KSE和DSE的不同应用将促进非线性光学、流体力学、玻色-爱因斯坦凝聚和生物学领域思想的交叉融合。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Turbulence Appearance and Nonappearance in Thin Fluid Layers
  • DOI:
    10.1103/physrevlett.121.164501
  • 发表时间:
    2018-10-16
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Falkovich, Gregory;Vladimirova, Natalia
  • 通讯作者:
    Vladimirova, Natalia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pavel Lushnikov其他文献

Pavel Lushnikov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pavel Lushnikov', 18)}}的其他基金

Motion of Complex Singularities and Integrability in Surface Dynamics
表面动力学中复杂奇点的运动和可积性
  • 批准号:
    1814619
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Vlasov Multi-Dimensional Simulation of Langmuir Wave Collapse and Stimulated Raman Scatter in the Fluid-Kinetic Transition Regime
合作研究:流体动力学转变体系中 Langmuir 波崩溃和受激拉曼散射的 Vlasov 多维模拟
  • 批准号:
    1004118
  • 财政年份:
    2010
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Strong Turbulence from Singular Collapses in Nonlinear Schroedinger Type of Equations
合作研究:非线性薛定谔方程中奇异塌陷引起的强湍流
  • 批准号:
    0807131
  • 财政年份:
    2008
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
  • 批准号:
    82371616
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
紧密连接蛋白PARD3下调介导黏膜上皮屏障破坏激活STAT3/SNAI2通路促进口腔白斑病形成及进展的机制研究
  • 批准号:
    82370954
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
转录因子DHR3在管腔形成和顶-基端极性建立中的作用机制
  • 批准号:
    31970743
  • 批准年份:
    2019
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
羊草子株出生、发育及成穗的生理与分子机制
  • 批准号:
    31172259
  • 批准年份:
    2011
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
星系结构基本单元星团的研究
  • 批准号:
    11043006
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
力学环境对骨愈合初期的新生血管形成图式的影响研究
  • 批准号:
    11072021
  • 批准年份:
    2010
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
星系恒星与气体的动力学演化
  • 批准号:
    11073025
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
数值化方法改进密度泛函计算能量精度的研究
  • 批准号:
    20973138
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
利用Virgo星系团研究星系形成的早期历史
  • 批准号:
    10873001
  • 批准年份:
    2008
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Shock formation, shock development, and the propagation of singularities in fluid dynamics
合作研究:激波形成、激波发展以及流体动力学中奇点的传播
  • 批准号:
    2307680
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Shock formation, shock development, and the propagation of singularities in fluid dynamics
合作研究:激波形成、激波发展以及流体动力学中奇点的传播
  • 批准号:
    2307681
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Analysis of formation and extinction of singularities in nonlinear parabolic equations
非线性抛物方程中奇点的形成和消失分析
  • 批准号:
    23K12998
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations
三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索
  • 批准号:
    2205590
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
  • 批准号:
    RGPIN-2014-05050
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
  • 批准号:
    RGPIN-2014-05050
  • 财政年份:
    2017
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
  • 批准号:
    RGPIN-2014-05050
  • 财政年份:
    2016
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
  • 批准号:
    RGPIN-2014-05050
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
The Formation of Singularities in Ricci Flow and Harmonic Ricci Flow
里奇流和谐波里奇流奇点的形成
  • 批准号:
    EP/M011224/1
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Research Grant
Canonical Metrics, Geometric Flows and Formation of Singularities
规范度量、几何流和奇点的形成
  • 批准号:
    1406124
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了