Intelligent Intensive Care Unit (I2CU): Pervasive Sensing and Artificial Intelligence for Augmented Clinical Decision-making

智能重症监护病房 (I2CU):普遍传感和人工智能增强临床决策

基本信息

  • 批准号:
    10154047
  • 负责人:
  • 金额:
    $ 63.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Project Summary Although close monitoring and dynamic assessment of patient acuity are key aspects of ICU care, both are limited by the time constraints imposed on healthcare providers. Currently, dynamic and precise assessment of patient’s acuity in ICU rely almost exclusively on physicians’ clinical judgment and vigilance. Furthermore, important visual assessment details, such as facial expressions, posture, and mobility, are captured sporadically by overburdened nurses or are not captured at all. However, these visual assessment details are associated with critical indices such as physical function, pain and subsequent clinical deterioration. The PIs’ long-term goal is to sense, quantify, and communicate patient’s clinical condition in an autonomous and precise manner. The overall objective of this application is to develop the novel tools for sensing, quantifying, and communicating any patient’s condition in an autonomous, precise, and interpretable manner. The central hypothesis is that deep learning models will be superior to existing acuity clinical scores by predicting acuity in a dynamic, precise, and interpretable manner, using autonomous assessment of pain, emotional distress and physical function, together with clinical and physiologic data. The hypothesis has been formulated based on preliminary data and is well-grounded in clinical care literature. The rationale is that autonomous and precise patient quantification can result in enhanced clinical workflow and early intervention. The overall objective will be achieved by pursuing three specific aims. (1) Developing and validating an interpretable deep learning algorithm for precise and dynamic prediction of the patient’s clinical status to determine if it is more accurate in predicting daily care transition outcomes, while providing interpretable information to the physician. (2) Developing a pervasive sensing system for autonomous visual assessment of critically ill patients to determine if it can provide accurate visual assessment of a patient compared to human expert, and if it can enrich acuity prediction when combined with clinical data. (3) Implementing and evaluating an intelligent platform for real- time integration of autonomous visual assessment and acuity prediction in clinical workflow to determine accuracy in real-time prospective evaluation and to determine physicians’ risk perception and satisfaction. The approach is innovative, because it represents the first attempt to (1) dynamically predict precise patient trajectory, (2) autonomously perform visual assessment in the ICU, and (3) implement artificial intelligence platform in real time in clinical workflow. The proposed research is significant since it will address several key problems and critical barriers in critical care, including (1) lack of precise and real-time prediction of clinical trajectory, (2) manual repetitive ICU assessments, and (3) uncaptured patient aspects. Ultimately, the results are expected to improve patient outcomes and decrease hospitalization costs, as well as lifelong complications.
项目摘要 尽管密切监测和动态评估患者病情是ICU护理的关键方面, 受强加于医疗保健提供者的时间限制的限制。目前,动态和精确的评估 ICU病人的病情几乎完全依赖于医生的临床判断和警惕性。此外,委员会认为, 重要的视觉评估细节,如面部表情、姿势和移动性,都被捕获 偶尔由负担过重的护士或根本没有被捕获。然而,这些视觉评估细节 与身体功能、疼痛和随后的临床恶化等关键指标相关。私家侦探 长期目标是在一个自主的, 精确的方式。本申请的总体目标是开发用于感测、量化 并以自主、精确和可解释的方式传达任何患者的状况。中央 假设是,深度学习模型将通过预测以下方面的敏锐度而上级于现有敏锐度临床评分: 一个动态的,精确的,可解释的方式,使用自主评估的疼痛,情绪困扰, 身体功能,以及临床和生理数据。该假设是基于以下几点提出的: 初步数据,并在临床护理文献中有充分的依据。其原理是,自主和精确 患者量化可以导致增强的临床工作流程和早期干预。总体目标将 要实现这三个具体目标。(1)开发和验证可解释的深度学习 用于精确和动态预测患者的临床状态的算法,以确定其是否更准确, 预测日常护理过渡结果,同时为医生提供可解释的信息。(二) 开发一种用于重症患者自主视觉评估的普适传感系统,以确定 如果与人类专家相比,其能够提供患者准确视觉评估,且如果其能够丰富敏锐度 结合临床数据进行预测。(3)实施和评估真实的智能平台 在临床工作流程中对自主视力评估和敏锐度预测进行时间整合, 实时前瞻性评估的准确性,并确定医生的风险感知和满意度。的 这种方法是创新的,因为它代表了第一次尝试(1)动态预测精确的患者 轨迹,(2)在ICU中自主执行视觉评估,以及(3)实施人工智能 在临床工作流程中真实的实时使用平台。这项研究是重要的,因为它将解决几个关键问题。 重症监护中的问题和关键障碍,包括(1)缺乏精确和实时的临床预测 轨迹,(2)手动重复ICU评估,以及(3)未捕获的患者方面。最终,结果 预计将改善患者的预后,降低住院费用, 并发症

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Azra Bihorac其他文献

Azra Bihorac的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Azra Bihorac', 18)}}的其他基金

Bridge2AI: Patient-Focused Collaborative Hospital Repository Uniting Standards (CHoRUS) for Equitable AI
Bridge2AI:以患者为中心的协作医院存储库统一标准 (CHORUS),实现公平的人工智能
  • 批准号:
    10858694
  • 财政年份:
    2022
  • 资助金额:
    $ 63.21万
  • 项目类别:
Bridge2AI: Patient-Focused Collaborative Hospital Repository Uniting Standards (CHoRUS) for Equitable AI
Bridge2AI:以患者为中心的协作医院存储库统一标准 (CHORUS),实现公平的人工智能
  • 批准号:
    10472824
  • 财政年份:
    2022
  • 资助金额:
    $ 63.21万
  • 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
  • 批准号:
    10414976
  • 财政年份:
    2021
  • 资助金额:
    $ 63.21万
  • 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
  • 批准号:
    10594086
  • 财政年份:
    2021
  • 资助金额:
    $ 63.21万
  • 项目类别:
ADAPT: Autonomous Delirium Monitoring and Adaptive Prevention
ADAPT:自主谵妄监测和适应性预防
  • 批准号:
    10396041
  • 财政年份:
    2021
  • 资助金额:
    $ 63.21万
  • 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
  • 批准号:
    10609525
  • 财政年份:
    2021
  • 资助金额:
    $ 63.21万
  • 项目类别:
ADAPT: Autonomous Delirium Monitoring and Adaptive Prevention
ADAPT:自主谵妄监测和适应性预防
  • 批准号:
    10178157
  • 财政年份:
    2021
  • 资助金额:
    $ 63.21万
  • 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
  • 批准号:
    10209005
  • 财政年份:
    2021
  • 资助金额:
    $ 63.21万
  • 项目类别:
Intelligent Intensive Care Unit (I2CU): Pervasive Sensing and Artificial Intelligence for Augmented Clinical Decision-making
智能重症监护病房 (I2CU):普遍传感和人工智能增强临床决策
  • 批准号:
    10580785
  • 财政年份:
    2021
  • 资助金额:
    $ 63.21万
  • 项目类别:
Intelligent Intensive Care Unit (I2CU): Pervasive Sensing and Artificial Intelligence for Augmented Clinical Decision-making
智能重症监护病房 (I2CU):普遍传感和人工智能增强临床决策
  • 批准号:
    10374834
  • 财政年份:
    2021
  • 资助金额:
    $ 63.21万
  • 项目类别:

相似海外基金

CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
  • 批准号:
    2236926
  • 财政年份:
    2023
  • 资助金额:
    $ 63.21万
  • 项目类别:
    Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
  • 批准号:
    LP210200798
  • 财政年份:
    2023
  • 资助金额:
    $ 63.21万
  • 项目类别:
    Linkage Projects
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
  • 批准号:
    2765246
  • 财政年份:
    2022
  • 资助金额:
    $ 63.21万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 63.21万
  • 项目类别:
    Standard Grant
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
  • 批准号:
    ES/R00983X/2
  • 财政年份:
    2022
  • 资助金额:
    $ 63.21万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 63.21万
  • 项目类别:
    Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
  • 批准号:
    10683803
  • 财政年份:
    2022
  • 资助金额:
    $ 63.21万
  • 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
  • 批准号:
    460558
  • 财政年份:
    2022
  • 资助金额:
    $ 63.21万
  • 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
  • 批准号:
    RGPIN-2022-04417
  • 财政年份:
    2022
  • 资助金额:
    $ 63.21万
  • 项目类别:
    Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
  • 批准号:
    10544772
  • 财政年份:
    2022
  • 资助金额:
    $ 63.21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了