ADAPT: Autonomous Delirium Monitoring and Adaptive Prevention
ADAPT:自主谵妄监测和适应性预防
基本信息
- 批准号:10178157
- 负责人:
- 金额:$ 61.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAffectAlgorithmsBiological MarkersCircadian DysregulationCircadian desynchronyClinicalClinical DataClinical InformaticsCollaborationsComaComputing MethodologiesCritical CareCritical IllnessCuesDataData SetDeliriumElectronic Health RecordEnvironmentFosteringFoundationsFrequenciesHospital CostsHumanImageImpaired cognitionIntelligenceIntensive Care UnitsInterventionLightMedicalMedicineMissionModelingMonitorNeurologyNoiseObservational StudyOutcomePainPatient-Focused OutcomesPatientsPharmacologyPhysiciansPhysiologicalPreventionPrevention strategyProcessProviderPublic HealthReproducibilityResearchRisk FactorsSamplingSleep disturbancesSyndromeSystemTechniquesTechnologyTestingTimeUnited StatesUnited States National Institutes of Healthadvanced diseasebasebrain dysfunctioncircadiancircadian regulationclinical careclinical decision-makingcostdeep learningdeep learning algorithmdisease diagnosisdynamic systemhigh riskimprovedinnovationlight intensitymortalitynovelnovel strategiespatient mobilitypredictive modelingpressureprospectivereal time monitoringsatisfactionsensorsensor technologysoundtool
项目摘要
Project Summary
Recent large-scale trials have shown no significant benefit of pharmacological interventions in delirium
patients, and non-pharmacological approaches remain the cornerstone of delirium prevention. Among those
strategies, minimizing patient immobility and circadian desynchrony are particularly difficult to implement, as
their assessment is dependent on sporadic human observations. The overall objective of this application is to
develop ADAPT, the Autonomous Delirium Monitoring and Adaptive Prevention system using novel pervasive
sensing and deep learning techniques. It will autonomously quantify patients’ mobility and circadian
desynchrony in terms of nightly disruptions, light intensity, and sound pressure level. This will allow for
integration of these risk factors into a dynamic model for predicting delirium trajectories. It will also enable
adaptive action prompts aimed at increasing patients’ mobility, reducing nightly disruptions, optimizing ambient
light, and reducing noise, based on precise real-time quantification. The rationale is that successful application
of the proposed technology would augment clinical-decision making in the fast-paced ICU environment and
would promote more targeted interventions. The overall objective will be achieved by pursuing three specific
aims. (1) Developing and validating an interpretable deep learning algorithm for precise and dynamic prediction
of the delirium trajectory, to determine if it is more accurate in predicting delirium trajectory transitions
compared to existing tools, while providing interpretable information to the physician. (2) Developing a
pervasive sensing system for autonomous monitoring of mobility and circadian desynchrony, to determine if it
can provide accurate assessments compared to human expert and circadian biomarkers, and if it can enrich
delirium trajectory prediction when combined with clinical data. (3) Developing and evaluating prompts for
adaptive delirium prevention using real-time monitoring system, to determine if the system has acceptable
satisfaction and perceived benefit among ICU physicians. The approach is innovative, because it represents
the first attempt to (1) dynamically predict precise delirium trajectory, (2) autonomously monitor mobility and
circadian desynchrony risk factors in the ICU, and (3) implement adaptive preventions in real time. The
proposed research is significant since it will address several key problems and critical barriers in critical care,
including (1) lack of precise and real-time delirium trajectory prediction models, (2) uncaptured aspects of
mobility and circadian desynchrony, and (3) the need for novel approaches for non-pharmacological
prevention. Ultimately, the results are expected to improve patient outcomes and decrease hospitalization
costs, as well as lifelong complications.
项目摘要
最近的大规模试验表明药物干预对谵妄没有明显的益处
患者,非药物方法仍然是谵妄预防的基石。人中
策略,最大限度地减少患者的不动性和昼夜节律性,特别难以实施,
它们的评估依赖于零星的人类观察。本应用程序的总体目标是
开发ADAPT,自主谵妄监测和自适应预防系统,使用新的普适
传感和深度学习技术。它将自动量化患者的活动性和昼夜节律
在夜间干扰、光强度和声压级方面,这将允许
将这些危险因素整合到预测谵妄轨迹的动态模型中。它还将使
自适应行动提示,旨在增加患者的流动性,减少夜间干扰,优化环境
基于精确的实时量化,实现更高的亮度和更低的噪音。理由是成功的应用
所提出的技术将在快节奏的ICU环境中增强临床决策,
将促进更有针对性的干预。总体目标将通过以下三个具体方面来实现:
目标。(1)开发和验证可解释的深度学习算法,用于精确和动态预测
的谵妄轨迹,以确定它是否更准确地预测谵妄轨迹转换
与现有的工具相比,同时向医生提供可解释的信息。(2)开发一
用于自主监测移动性和昼夜节律的普及感测系统,以确定其是否
与人类专家和昼夜节律生物标志物相比,
结合临床数据进行谵妄轨迹预测。(3)开发和评估提示,
自适应谵妄预防使用实时监测系统,以确定系统是否具有可接受的
ICU医生的满意度和感知效益。这种方法是创新的,因为它代表了
首次尝试(1)动态预测精确的谵妄轨迹,(2)自主监测移动性,
ICU中的昼夜节律性疾病危险因素,以及(3)真实的时间实施适应性预防。的
所提出的研究是重要的,因为它将解决重症监护中的几个关键问题和关键障碍,
包括(1)缺乏精确和实时的谵妄轨迹预测模型,(2)
流动性和昼夜节律,和(3)需要新的方法,非药物
预防最终,结果有望改善患者的预后并减少住院治疗
成本,以及终身并发症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Azra Bihorac其他文献
Azra Bihorac的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Azra Bihorac', 18)}}的其他基金
Bridge2AI: Patient-Focused Collaborative Hospital Repository Uniting Standards (CHoRUS) for Equitable AI
Bridge2AI:以患者为中心的协作医院存储库统一标准 (CHORUS),实现公平的人工智能
- 批准号:
10858694 - 财政年份:2022
- 资助金额:
$ 61.26万 - 项目类别:
Bridge2AI: Patient-Focused Collaborative Hospital Repository Uniting Standards (CHoRUS) for Equitable AI
Bridge2AI:以患者为中心的协作医院存储库统一标准 (CHORUS),实现公平的人工智能
- 批准号:
10472824 - 财政年份:2022
- 资助金额:
$ 61.26万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10414976 - 财政年份:2021
- 资助金额:
$ 61.26万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10594086 - 财政年份:2021
- 资助金额:
$ 61.26万 - 项目类别:
ADAPT: Autonomous Delirium Monitoring and Adaptive Prevention
ADAPT:自主谵妄监测和适应性预防
- 批准号:
10396041 - 财政年份:2021
- 资助金额:
$ 61.26万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10609525 - 财政年份:2021
- 资助金额:
$ 61.26万 - 项目类别:
Intelligent Intensive Care Unit (I2CU): Pervasive Sensing and Artificial Intelligence for Augmented Clinical Decision-making
智能重症监护病房 (I2CU):普遍传感和人工智能增强临床决策
- 批准号:
10154047 - 财政年份:2021
- 资助金额:
$ 61.26万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10209005 - 财政年份:2021
- 资助金额:
$ 61.26万 - 项目类别:
Intelligent Intensive Care Unit (I2CU): Pervasive Sensing and Artificial Intelligence for Augmented Clinical Decision-making
智能重症监护病房 (I2CU):普遍传感和人工智能增强临床决策
- 批准号:
10580785 - 财政年份:2021
- 资助金额:
$ 61.26万 - 项目类别:
Intelligent Intensive Care Unit (I2CU): Pervasive Sensing and Artificial Intelligence for Augmented Clinical Decision-making
智能重症监护病房 (I2CU):普遍传感和人工智能增强临床决策
- 批准号:
10374834 - 财政年份:2021
- 资助金额:
$ 61.26万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 61.26万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 61.26万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 61.26万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 61.26万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 61.26万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 61.26万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 61.26万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 61.26万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 61.26万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 61.26万 - 项目类别:
Research Grant