Rapid structure-based software to enhance antibody affinity and developability for high-throughput screening
基于快速结构的软件可增强抗体亲和力和高通量筛选的可开发性
基本信息
- 批准号:10155411
- 负责人:
- 金额:$ 99.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAffinityAlgorithmsAntibodiesAntibody AffinityAntibody TherapyAntigen-Antibody ComplexAntigensAreaAutoimmune DiseasesBindingBinding ProteinsBiologicalBiological ProductsBiological Response Modifier TherapyBiotechnologyBusinessesChemical StructureChemicalsClinicClinicalCloud ComputingComplementarity Determining RegionsComplexComputer AssistedComputer softwareComputersConsumptionDeaminationDependenceDetectionDevelopmentDiagnosisDiseaseDockingDrug TargetingEffectivenessEpitopesExcisionFreedomGoalsHealthHistocompatibility TestingHormonesHumanImmune systemImmunological ModelsLigandsLightMalignant NeoplasmsModelingModernizationMolecularMolecular ConformationMonoclonal AntibodiesPatientsPhage DisplayPharmaceutical PreparationsPharmacologic SubstancePhasePlayPotential EnergyProcessPropertyProtein EngineeringProtein RegionProteinsResearch ContractsResolutionRewardsRoleSoftware ToolsSpeedStructural ModelsStructureSurfaceTechniquesTechnologyTestingTherapeuticTherapeutic EffectTherapeutic Monoclonal AntibodiesTherapeutic antibodiesThermodynamicsTimeToxinV(D)J RecombinationVariantVirus DiseasesWorkantigen bindingbasecombinatorialcostdesigndrug candidatedrug developmentdrug discoveryexperimental studyflexibilityglycosylationhigh throughput screeninghuman diseaseimprovedinnovationinterestmanufacturing processnovel strategiesnovel therapeutic interventionorgan transplant rejectionpathogenpre-B cell receptorprediction algorithmpreventprogramsprotein complexprotein structureprotein structure predictionresponsescale upscreeningside effectsimulationstructural biologysuccessthree dimensional structurethree-dimensional modelingtoolvirtualvirtual screening
项目摘要
Therapeutic monoclonal antibodies bind to specific regions of proteins called epitopes, which elicit cellular
responses that treat or cure disease. Discovering therapeutic antibodies traditionally requires laborious and
expensive screening experiments, so computational approaches that select which antibodies bind an epitope
best and have the most desirable pharmaceutical properties are in high demand. Structure-based antibody
design is also important to the modern drug discovery and development process. This approach requires a high-
resolution quaternary (3D) protein complex structure, whose experimental determination is often a slow process
that is not always successful. Protein structure and binding interface prediction algorithms are poised to impact
human health by accelerating the construction of high-confidence structural models of drug targets and
biopharmaceuticals, which will help identify new therapeutic strategies. However, the current algorithms are
limited in their ability to distinguish stronger-binding antibodies from weaker ones, which is preventing the
discovery of broad classes of therapeutics. In addition, technologies are needed to predict if a candidate antibody
will fail as early as possible in the development process. With improvements in simulating removal of molecular
liabilities without damaging function, computer-aided antibody design can be used to lower drug development
costs and focus experiments on the most promising drug candidates.
Here we propose to advance antibody discovery by developing highly accurate software tools built on the
success of DNASTAR’s NovaFold Antibody program for antibody structure prediction, NovaDock for flexible
protein-protein docking, and Lasergene Protein Design for protein engineering. The aims of the project focus 1)
on developing more accurate and effective immune complex (an interacting antibody and antigen) structure
predictions through better modeling of the challenging complementarity-determining regions (CDR), which play
a critical role in antibody affinity and selectivity; and 2) on predicting antibody sequences that reduce chemical
and energetic liabilities that prove detrimental to an antibody’s manufacturing process or therapeutic effect in a
patient. In particular, overall predictive capability will be improved by incorporating computational acceleration
techniques to support the virtual screening of tens of thousands of antibody sequences. Finally, and for the first
time, this project will develop a “virtual immune system” to approach human antibody discovery, where antibodies
will be modeled from germline sequences and selected for best recognizing an antigen of interest. The overall
project goal is to deliver an advanced antibody screening pipeline that is powerful, accurate, and produces fast
results, which will accelerate antibody discovery by enabling detailed and accurate immune complex structure
predictions and structure-based liability detection at a high-throughput scale.
治疗性单克隆抗体与称为表位的蛋白质的特定区域结合,
治疗或治愈疾病的反应发现治疗性抗体传统上需要费力且
昂贵的筛选实验,因此选择哪些抗体结合表位的计算方法
最好的和具有最理想的药物性能的药物是高需求的。结构抗体
设计对现代药物发现和开发过程也很重要。这种方法需要高-
四元(3D)蛋白质复合物结构的分辨率,其实验测定通常是一个缓慢的过程
这并不总是成功的。蛋白质结构和结合界面预测算法有望影响
通过加快构建药物靶点的高置信度结构模型,
这将有助于确定新的治疗策略。然而,目前的算法是
它们区分较强结合抗体和较弱结合抗体的能力有限,这阻碍了它们的免疫反应。
发现了广泛的治疗方法。此外,还需要技术来预测候选抗体是否
在开发过程中尽早失败。随着模拟去除分子的改进,
在不破坏功能的情况下,计算机辅助抗体设计可用于降低药物开发
成本和重点实验最有前途的候选药物。
在这里,我们建议通过开发基于
DNASTAR的NovaFold Antibody项目成功预测抗体结构,NovaDock项目成功预测柔性
蛋白质-蛋白质对接和蛋白质工程的激光基因蛋白质设计。项目重点1)
开发更准确和有效的免疫复合物(相互作用的抗体和抗原)结构
通过对具有挑战性的互补决定区(CDR)进行更好的建模,
在抗体亲和力和选择性中发挥关键作用;以及2)预测减少化学物质的抗体序列
以及被证明对抗体的制造过程或治疗效果有害的精力充沛的责任
病人特别是,通过结合计算加速,将提高整体预测能力
技术来支持数以万计的抗体序列的虚拟筛选。最后,也是第一次
该项目将开发一个“虚拟免疫系统”,以接近人类抗体的发现,其中抗体
将从生殖系序列建模,并选择最佳识别感兴趣的抗原。整体
项目的目标是提供一个先进的抗体筛选管道,是强大的,准确的,并产生快速
结果,这将通过实现详细和准确的免疫复合物结构来加速抗体发现
预测和基于结构的可靠性检测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Joseph Darnell其他文献
Steven Joseph Darnell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Joseph Darnell', 18)}}的其他基金
Rapid structure-based software to enhance antibody affinity and developability for high-throughput screening
基于快速结构的软件可增强抗体亲和力和高通量筛选的可开发性
- 批准号:
10080587 - 财政年份:2020
- 资助金额:
$ 99.87万 - 项目类别:
Accurate accessible cloud software for protein folding for molecular biologists
为分子生物学家提供准确、可访问的蛋白质折叠云软件
- 批准号:
8931346 - 财政年份:2014
- 资助金额:
$ 99.87万 - 项目类别:
Accurate accessible cloud software for protein folding for molecular biologists
为分子生物学家提供准确、可访问的蛋白质折叠云软件
- 批准号:
8714681 - 财政年份:2014
- 资助金额:
$ 99.87万 - 项目类别:
Accurate accessible cloud software for protein folding for molecular biologists
为分子生物学家提供准确、可访问的蛋白质折叠云软件
- 批准号:
8991498 - 财政年份:2014
- 资助金额:
$ 99.87万 - 项目类别:
Structural bioinformatics software for epitope selection and antibody engineering
用于表位选择和抗体工程的结构生物信息学软件
- 批准号:
9009304 - 财政年份:2012
- 资助金额:
$ 99.87万 - 项目类别:
Structural bioinformatics software for epitope selection and antibody engineering
用于表位选择和抗体工程的结构生物信息学软件
- 批准号:
8781169 - 财政年份:2012
- 资助金额:
$ 99.87万 - 项目类别:
Structural bioinformatics software for epitope selection and antibody engineering
用于表位选择和抗体工程的结构生物信息学软件
- 批准号:
8251785 - 财政年份:2012
- 资助金额:
$ 99.87万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 99.87万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 99.87万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 99.87万 - 项目类别:
Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 99.87万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 99.87万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 99.87万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 99.87万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 99.87万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 99.87万 - 项目类别:
Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 99.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)