Glutamate receptors and human neurological disease
谷氨酸受体与人类神经系统疾病
基本信息
- 批准号:10153899
- 负责人:
- 金额:$ 76.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAgonistAlzheimer&aposs DiseaseBindingBinding SitesBiologyBrainCationsChemistryClinicalCollaborationsCorpus striatum structureCryoelectron MicroscopyDevelopmentDiseaseElectrophysiology (science)EpilepsyEvaluationGene FrequencyGenesGeneticGenetic VariationGenomeGlutamate ReceptorGlutamatesHumanIndividualIon ChannelIschemiaLearningMediatingMemoryMolecular StructureMutationN-Methyl-D-Aspartate ReceptorsNMDA receptor A1NeurologicNeuroprotective AgentsParkinson DiseasePenetrationPermeabilityPharmaceutical ChemistryPharmacologyPopulationProbabilityProcessPropertyProtein RegionRare DiseasesReceptor SignalingResearchRisk FactorsRoboticsRoleSiteSolubilityStrokeStructureSynaptic TransmissionThalamic structureTherapeuticVariantdesigndisorder riskexperimental studygenetic analysisimprovedin vivoin vivo Modelinsightinterestnervous system disordernovelnovel therapeutic interventionnovel therapeuticspostsynapticprecision medicineprogramsrare variantreceptorreceptor functionside effectstructural biologysynaptic functiontooltreatment strategy
项目摘要
This R35 Research Program proposal will use electrophysiological, molecular, and structural approaches to
probe multiple aspects of excitatory synaptic function that are relevant for neurological disease. We will focus on
the elucidation and modulation of the functional properties of postsynaptic glutamate receptors. We will take
advantage of coincident advances in cryoEM, genetics, robotics, and receptor biology to address questions that
were previously inaccessible. Four approaches will address critical gaps in our understanding of synaptic
function and provide therapeutically-relevant insight into neurological disease.
First, we will explore the functional and clinical implications of regional intolerance for variation in the healthy
population as well as de novo disease-associated glutamate receptor mutations, most commonly found in GRIN1,
GRIN2A, GRIN2B, GRIN2D, genes that are among the least tolerant in the genome. We will establish the
relationship in healthy individuals between allelic frequency and functional changes, which is necessary in order
to understand the potential role of SNPs in these genes as disease risk factors. Evaluation of these rare variants
will also provide opportunities for precision medicine, and advance our understanding of receptor function.
Second, we will develop novel compounds for proof-of-concept studies to identify new therapeutic strategies for
neurological disorders. We will synthesize subunit-selective modulators of agonist potency and channel open
probability to assess the roles of understudied NMDA receptor subunits (e.g. GluN2C, GluN2D) in circuits in
cortex, thalamus, and striatum. We will determine the site and mechanism of action of modulators of NMDA
receptors, and use medicinal chemistry to improve brain penetration, potency, and solubility in collaboration
with Dennis Liotta in Chemistry at Emory. We will use the pharmacological tools that we develop to gain insight
into the treatment of epilepsy, stroke, Parkinson’s disease, and Alzheimer’s disease.
Third, we explore biased modulators of NMDA receptors by developing the SAR of two classes of compounds
that alter ion channel selectivity. These compounds represent the first example whereby a pharmacological
agent can alter channel permeation properties, demonstrating that modulators can tune distinct functions of the
NMDA receptor. These compounds hold enormous potential as neuroprotectants that diminish cation flux
without side effects associated with receptor blockade, which we will evaluate in vivo in models of ischemia.
Fourth, we will combine information obtained through genetic analysis of regional intolerance, mechanism of
allosteric modulation, and new advances in structural biology to advance our understanding of the mechanisms
that convert glutamate binding to channel opening. These experiments will focus on the shared regions of the
protein that control channel opening, which are the key sites of action of our allosteric modulators and common
sites for disease-associated human mutations. We will collaboratively perform cryoEM and crystallographic
studies to determine the binding site for modulators, as well as key features of channel structure and function.
该R35研究计划提案将使用电生理、分子和结构方法来
探索与神经系统疾病相关的兴奋性突触功能的多个方面。我们将重点关注
突触后谷氨酸受体功能特性的阐明和调控。我们会带上
利用低温电子显微镜、遗传学、机器人学和受体生物学的同步进展来解决以下问题
以前是无法进入的。四种方法将解决我们对突触理解中的关键差距
功能,并提供与治疗相关的神经疾病洞察。
首先,我们将探讨地区性不耐受对健康人群变异的功能和临床意义。
以及与新发疾病相关的谷氨酸受体突变,最常见的发现于GRIN1,
GRIN2A、GRIN2B、GRIN2D是基因组中耐受性最差的基因之一。我们将建立
健康个体的等位基因频率与功能改变之间的关系,这是顺序上必要的
了解这些基因中SNPs作为疾病危险因素的潜在作用。对这些稀有变种的评估
也将为精确医学提供机会,并促进我们对受体功能的理解。
第二,我们将为概念验证研究开发新的化合物,以确定新的治疗策略
神经紊乱。我们将合成激动剂效力和通道开放的亚单位选择性调节剂
评估未被研究的NMDA受体亚单位(例如,GluN2C,GluN2D)在脑内神经回路中作用的概率
皮质、丘脑和纹状体。我们将确定NMDA调节剂的作用部位和作用机制
受体,并使用药物化学来改善协作中的脑渗透、效力和溶解性
和丹尼斯·利奥塔一起在埃默里大学上化学课。我们将使用我们开发的药理学工具来获得洞察力
用于治疗癫痫、中风、帕金森氏症和阿尔茨海默病。
第三,我们通过开发两类化合物的SAR来探索NMDA受体的偏向调节器
这会改变离子通道的选择性。这些化合物代表了第一个例子,表明一种药理
调整剂可以改变通道渗透特性,表明调制器可以调整不同的功能
NMDA受体。这些化合物具有作为神经保护剂的巨大潜力,可以减少阳离子通量。
没有与受体阻断相关的副作用,我们将在缺血模型中对其进行体内评估。
第四,我们将结合通过对区域不容忍的遗传分析获得的信息,
变构调节和结构生物学的新进展促进了我们对其机制的理解
将谷氨酸结合转化为通道开放。这些实验将重点放在
控制通道开放的蛋白质,这是我们的变构调节剂和常见的
与疾病相关的人类突变的地点。我们将合作进行低温电子显微镜和结晶学
研究确定调节剂的结合部位,以及通道结构和功能的关键特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen F Traynelis其他文献
Mechanistic twists and turns
机制的曲折
- DOI:
10.1038/nchembio.1614 - 发表时间:
2014-08-18 - 期刊:
- 影响因子:13.700
- 作者:
Kasper B Hansen;Stephen F Traynelis - 通讯作者:
Stephen F Traynelis
Stephen F Traynelis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen F Traynelis', 18)}}的其他基金
Genetic analysis to determine the functional role of GRID1
遗传分析以确定 GRID1 的功能作用
- 批准号:
10217304 - 财政年份:2021
- 资助金额:
$ 76.06万 - 项目类别:
Glutamate receptors and human neurological disease
谷氨酸受体与人类神经系统疾病
- 批准号:
10392917 - 财政年份:2019
- 资助金额:
$ 76.06万 - 项目类别:
Glutamate receptors and human neurological disease
谷氨酸受体与人类神经系统疾病
- 批准号:
10608949 - 财政年份:2019
- 资助金额:
$ 76.06万 - 项目类别:
Glutamate receptors and human neurological disease
谷氨酸受体与人类神经系统疾病
- 批准号:
9923776 - 财政年份:2019
- 资助金额:
$ 76.06万 - 项目类别:
Functional effects of ion channel mutations found via exome sequencing
通过外显子组测序发现离子通道突变的功能影响
- 批准号:
9193444 - 财政年份:2016
- 资助金额:
$ 76.06万 - 项目类别:
Control of AMPA receptor function by phosphorylation
通过磷酸化控制 AMPA 受体功能
- 批准号:
8213435 - 财政年份:2010
- 资助金额:
$ 76.06万 - 项目类别:
Control of AMPA receptor function by phosphorylation
通过磷酸化控制 AMPA 受体功能
- 批准号:
8015207 - 财政年份:2010
- 资助金额:
$ 76.06万 - 项目类别:
Control of AMPA receptor function by phosphorylation
通过磷酸化控制 AMPA 受体功能
- 批准号:
7565237 - 财政年份:2010
- 资助金额:
$ 76.06万 - 项目类别:
相似国自然基金
Agonist-GPR119-Gs复合物的结构生物学研究
- 批准号:32000851
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
- 批准号:
24K12256 - 财政年份:2024
- 资助金额:
$ 76.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AHR agonistによるSLE皮疹の新たな治療薬の開発
使用 AHR 激动剂开发治疗 SLE 皮疹的新疗法
- 批准号:
24K19176 - 财政年份:2024
- 资助金额:
$ 76.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
- 批准号:
10578068 - 财政年份:2023
- 资助金额:
$ 76.06万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 76.06万 - 项目类别:
Targeting breast cancer microenvironment with small molecule agonist of relaxin receptor
用松弛素受体小分子激动剂靶向乳腺癌微环境
- 批准号:
10650593 - 财政年份:2023
- 资助金额:
$ 76.06万 - 项目类别:
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
- 批准号:
10649275 - 财政年份:2023
- 资助金额:
$ 76.06万 - 项目类别:
A randomized double-blind placebo controlled Phase 1 SAD study in male and female healthy volunteers to assess safety, pharmacokinetics, and transient biomarker changes by the ABCA1 agonist CS6253
在男性和女性健康志愿者中进行的一项随机双盲安慰剂对照 1 期 SAD 研究,旨在评估 ABCA1 激动剂 CS6253 的安全性、药代动力学和短暂生物标志物变化
- 批准号:
10734158 - 财政年份:2023
- 资助金额:
$ 76.06万 - 项目类别:
Investigating mechanisms underpinning outcomes in people on opioid agonist treatment for OUD: Disentangling sleep and circadian rhythm influences on craving and emotion regulation
研究阿片类激动剂治疗 OUD 患者结果的机制:解开睡眠和昼夜节律对渴望和情绪调节的影响
- 批准号:
10784209 - 财政年份:2023
- 资助金额:
$ 76.06万 - 项目类别:
A novel nanobody-based agonist-redirected checkpoint (ARC) molecule, aPD1-Fc-OX40L, for cancer immunotherapy
一种基于纳米抗体的新型激动剂重定向检查点 (ARC) 分子 aPD1-Fc-OX40L,用于癌症免疫治疗
- 批准号:
10580259 - 财政年份:2023
- 资助金额:
$ 76.06万 - 项目类别:
Fentanyl Addiction: Individual Differences, Neural Circuitry, and Treatment with a GLP-1 Receptor Agonist
芬太尼成瘾:个体差异、神经回路和 GLP-1 受体激动剂治疗
- 批准号:
10534864 - 财政年份:2023
- 资助金额:
$ 76.06万 - 项目类别: