Measuring and perturbing metabolic rhythms and the cell division cycle in single cells
测量和扰乱单细胞的代谢节律和细胞分裂周期
基本信息
- 批准号:10153814
- 负责人:
- 金额:$ 29.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:Acetyl Coenzyme AAddressAllelesBiochemicalBiological AssayBiological PacemakersCarbonCatabolismCell CommunicationCell CompartmentationCell CycleCellsCircadian RhythmsCouplingCyclic AMPCyclic AMP-Dependent Protein KinasesDataDisease ProgressionEnzymesEukaryotaEventFeedbackFluorescence MicroscopyFrequenciesGeneticGlycogen PhosphorylaseGoalsGrowthImmobilizationIndividualLeadLinkMasksMeasuresMetabolicMicrofluidicsMitosisModelingMolecular GeneticsMutationNADHOrganismOxidation-ReductionPathway interactionsPenetrancePhasePopulationPopulation HeterogeneityPublic HealthRegulationReporterResearchSaccharomycetalesSeriesSignal PathwayTestingTrehalaseTrehaloseWorkYeastscircadiancircadian pacemakercyclin G1event cycleexperimental studyhuman diseaseinnovationinsightmathematical modelnovel therapeutic interventionperoxiredoxinpublic health relevancesingle cell technology
项目摘要
PROJECT ABSTRACT: Metabolic rhythms occur in different cells and compartments within organisms. The
origins and impact of these rhythms on other biological oscillators (e.g. cell cycle, circadian clocks) is only
starting to be understood. The applicant’s long-term goal is to understand the mechanisms, function, and
interaction of metabolic rhythms and the cell cycle in budding yeast, a model eukaryote. The yeast metabolic
cycle (YMC) is a synchronous metabolic rhythm that occurs in a chemostat. The population synchrony arises
from YMC-to-YMC coupling between cells via secreted metabolites. The YMC within each cell also interacts
with the cell division cycle (CDC) to coordinate the events of carbon catabolism and cell cycle entry. These two
oscillators have different periods, yet remain coordinated such that a fraction of the population commits to the
CDC each YMC. Inference of YMC-CDC dynamics has been challenging because metabolic and cell cycle
events are often measured and averaged across a heterogeneous population, which masks the dynamics that
occur in a single cell. The objective of this proposal is to obtain new insights into these intracellular oscillators
by measuring and perturbing the YMC and CDC in single cells. The central hypothesis is that the YMC and
CDC can oscillate independently of one another but are normally coordinated in yeast through a reinforcing
feedback loop (i.e., entry into a carbon catabolic state triggers the cell cycle, and, reciprocally, initiating the cell
cycle triggers entry into a carbon catabolic state). The applicants will generate data that address the central
hypothesis and its alternative with three specific aims: (1) Develop fluorescent reporter assays to measure
population snapshots of metabolic and cell cycle states in single cells taken from a cycling chemostat; (2)
Perturb the reinforcing feedback loop to disrupt the synchronization of YMC and CDC events in a cycling
chemostat; and (3) Measure and perturb YMC-CDC dynamics outside the chemostat using timelapse
fluorescence microscopy with microfluidics. Aim 1 will elucidate the timing and coordination of metabolic and
cell cycle events in a cycling chemostat across different growth conditions. Aim 2 will directly test the
reinforcing feedback loop that coordinates these oscillators in a cycling chemostat. Aim 3 will measure the
extent to which metabolic rhythms occur in the absence of cell-to-cell communication via secreted metabolites
and whether they remain coordinated with cell cycle events as seen in the chemostat. The observation that
carbon catabolism and cell cycle entry remain coordinated in single cells across diverse growth conditions
would strongly support the central hypotheses. This work is innovative because it combines single-cell
technology and molecular genetics to address an unsolved problem in yeast with broad relevance to metabolic
rhythms and cell cycle in other eukaryotes. This proposal is significant because it elucidates new mechanisms
and regulatory principles of how intracellular oscillators with different frequencies can interact and remain
functional.
项目摘要:代谢节律发生在生物体的不同细胞和区室中。的
这些节律的起源和对其他生物振荡器(例如细胞周期,昼夜节律钟)的影响只是
开始被理解。申请人的长期目标是了解机制,功能,
芽殖酵母(一种模式真核生物)中代谢节律和细胞周期的相互作用。酵母代谢
周期(YMC)是发生在恒化器中的同步代谢节律。人口同步性出现
通过分泌的代谢物在细胞之间进行YMC-至-YMC偶联。每个细胞内的YMC也相互作用
与细胞分裂周期(CDC)协调碳催化剂和细胞周期进入事件。这两
振荡器具有不同的周期,但仍保持协调,使得一小部分人口致力于
CDC每个YMC。YMC-CDC动力学的推断一直具有挑战性,因为代谢和细胞周期
事件通常是在异质群体中测量和平均的,这掩盖了
发生在单个细胞中。这个建议的目的是获得这些细胞内振荡器的新见解
通过测量和干扰单细胞中的YMC和CDC。核心假设是,YMC和
CDC可以相互独立地振荡,但通常在酵母中通过增强的
反馈回路(即,进入碳分解代谢状态触发细胞周期,并且,首先,启动细胞
循环触发进入碳分解代谢状态)。申请人将生成数据,
假设及其备选方案,具有三个具体目标:(1)开发荧光报告基因测定,
从循环恒化器获取的单细胞中的代谢和细胞周期状态的群体快照;(2)
扰乱强化反馈回路,破坏循环中YMC和CDC事件的同步
恒化器;和(3)使用延时测量和扰动恒化器外部的YMC-CDC动态
荧光显微镜和微流体技术。目标1将阐明代谢和代谢的时机和协调
在不同的生长条件下,在循环恒化器中的细胞周期事件。目标2将直接测试
在循环恒化器中协调这些振荡器的加强反馈回路。目标3将衡量
在缺乏通过分泌代谢物进行细胞间通讯的情况下,代谢节律发生的程度
以及它们是否与恒化器中所见的细胞周期事件保持协调。的观察结果
在不同的生长条件下,单细胞中碳催化剂和细胞周期进入保持协调
会强烈支持中心假设。这项工作是创新的,因为它结合了单细胞
技术和分子遗传学来解决酵母中与代谢广泛相关的未解决的问题
其他真核生物的细胞周期和节律。这一建议意义重大,因为它阐明了新的机制
以及不同频率的细胞内振荡器如何相互作用并保持
不降低
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exact and efficient hybrid Monte Carlo algorithm for accelerated Bayesian inference of gene expression models from snapshots of single-cell transcripts.
精确高效的混合蒙特卡罗算法,用于根据单细胞转录本快照加速基因表达模型的贝叶斯推理。
- DOI:10.1063/1.5110503
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Lin,YenTing;Buchler,NicolasE
- 通讯作者:Buchler,NicolasE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NICOLAS EMILE BUCHLER其他文献
NICOLAS EMILE BUCHLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NICOLAS EMILE BUCHLER', 18)}}的其他基金
Measuring and perturbing metabolic rhythms and the cell division cycle in single cells
测量和扰乱单细胞的代谢节律和细胞分裂周期
- 批准号:
9901540 - 财政年份:2018
- 资助金额:
$ 29.6万 - 项目类别:
Rewiring the yeast brain: Redundancy and interference in genetic networks
重新连接酵母大脑:遗传网络的冗余和干扰
- 批准号:
8146626 - 财政年份:2011
- 资助金额:
$ 29.6万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
Research Grant