Collaborative Research: Advanced statistical methods for single cell RNA sequencing studies
合作研究:单细胞 RNA 测序研究的先进统计方法
基本信息
- 批准号:10155503
- 负责人:
- 金额:$ 31.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAddressAllelesBiologicalCell LineageCellsCommunitiesComplexComputer softwareComputing MethodologiesDataData AnalysesDevelopmentDimensionsDiseaseDropoutEffectivenessEventFaceGene ExpressionGenesGenetic VariationGenetic studyGenomicsHealthHeterogeneityHumanLinear ModelsMethodsModelingNatureOther GeneticsPatternPopulationResearchSNP genotypingStatistical MethodsTechnologyTissuesVariantbasebioinformatics pipelinebisulfite sequencinggenetic architecturegenome wide association studyhigh dimensionalityinnovationinsightmultidimensional dataopen sourcesingle-cell RNA sequencingstatisticstooltraituser-friendly
项目摘要
Single cell RNA sequencing has emerged as a powerful tool in genomics and has been used in a wide
variety of applications, providing unprecedented insights into many basic biological questions that are
previously difficult to address. However, analyzing scRNAseq data face important statistical and
computational challenges that require the development of new computational and statistical methods.
Key challenges include: (1) lack of robust statistical methods that can control for hidden confounding
effects in a range of settings; (2) lack of accurate cell subpopulation clustering methods that are
tailored to scRNAseq studies; and (3) difficulty in identifying functional genetic variations with scRNAseq
alone and difficulty in integrating scRNAseq with other genetic studies include genome-wide association
studies. Our proposed methods will address these challenges and are innovative in the following aspects: (1)
our method for controlling for hidden confounding effects bridges between two existing classes of statistical
methods for removing confounding effects and is thus expected to perform robustly across a range of
scenarios; (2) our method for clustering cell subpopulations extracts clustering information from a lowdimensional
representation of scRNAseq data and is thus expected to produce accurate results even when
the original high-dimensional gene expression matrix is noisy; and (3) our method for identifying allele
specific/biased expression using scRNAseq data alone represents the first such attempt and our method for
integrating scRNAseq with GWASs also represents the first such attempt. All our proposed methods are
tailored to scRNAseq data and will cope with the complexities and unique features of scRNAseq data,
including, but not limited to, low-coverage, count nature, and drop-out events. We will develop, distribute,
and support user-friendly open-source software implementing our methods to benefit the genomics and
statistics community. The statistical methods developed here will pave ways for developing similar methods
to other sequencing studies including bisulfite sequencing and ATAC-seq studies. The proposed methods
are essential for understanding the heterogeneity of tissue compositions and the genetic architecture of
complex traits and diseases - both are questions of central importance to human health.
单细胞RNA测序已经成为基因组学中的有力工具,并已广泛用于
各种各样的应用,提供了前所未有的见解,许多基本的生物学问题,
以前很难解决。然而,分析scRNAseq数据面临重要的统计和
计算挑战,需要开发新的计算和统计方法。
主要挑战包括:(1)缺乏可靠的统计方法,可以控制隐藏的混杂因素
(2)缺乏准确的细胞亚群聚类方法,
定制scRNAseq研究;和(3)难以用scRNAseq鉴定功能性遗传变异
scRNAseq与其他遗传学研究整合的困难包括全基因组关联
问题研究我们提出的方法将解决这些挑战,并在以下方面是创新的:(1)
我们的方法控制隐藏的混杂效应桥梁之间的两个现有类别的统计
用于消除混淆效应的方法,因此预计在一系列
(2)我们的方法聚类细胞亚群提取聚类信息,从一个低维
因此,即使在使用scRNAseq数据的情况下,
原始高维基因表达矩阵是有噪声的;以及(3)我们用于识别等位基因的方法
单独使用scRNAseq数据的特异性/偏见表达代表了第一次此类尝试和我们的方法
将scRNAseq与GWAS整合也代表了第一次这样的尝试。我们提出的所有方法都是
针对scRNAseq数据量身定制,并将科普scRNAseq数据的复杂性和独特特征,
包括但不限于低覆盖率、计数性质和退出事件。我们将开发,分发,
并支持用户友好的开源软件实现我们的方法,以造福基因组学,
统计界。这里开发的统计方法将为开发类似的方法铺平道路
其他测序研究,包括亚硫酸氢盐测序和ATAC-seq研究。所提出的方法
对于理解组织组成的异质性和遗传结构是必不可少的,
复杂的性状和疾病-两者都是对人类健康至关重要的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mengjie Chen其他文献
Mengjie Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mengjie Chen', 18)}}的其他基金
Develop new bioinformatics infrastructures and computational tools for epitranscriptomics data
为表观转录组数据开发新的生物信息学基础设施和计算工具
- 批准号:
10633591 - 财政年份:2023
- 资助金额:
$ 31.44万 - 项目类别:
Developing new computational tools for spatial transcriptomics data
开发空间转录组数据的新计算工具
- 批准号:
10278763 - 财政年份:2021
- 资助金额:
$ 31.44万 - 项目类别:
Developing new computational tools for spatial transcriptomics data
开发空间转录组数据的新计算工具
- 批准号:
10654027 - 财政年份:2021
- 资助金额:
$ 31.44万 - 项目类别:
New directions in single cell genomics method development
单细胞基因组学方法开发的新方向
- 批准号:
10732646 - 财政年份:2017
- 资助金额:
$ 31.44万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 31.44万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 31.44万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 31.44万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 31.44万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 31.44万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 31.44万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 31.44万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 31.44万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 31.44万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 31.44万 - 项目类别:
Research Grant