A Photochemically 3D Printed High-Resolution Biodegradable Suture Retention Clip

光化学 3D 打印高分辨率可生物降解缝合线固定夹

基本信息

  • 批准号:
    10157051
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

Abstract: The goal of this SBIR Phase I project is to demonstrate the feasibility of creating a 3D printed, biosynthetic Pronged Anchor-Clip to overcome the problems associated with large suture knots (knots from #5 suture, tape suture, and mesh suture). Currently large suture knots risk skin erosion, palpability, pain, scarring, infection, and may even require re-operation for suture abscess. Replacing a knot with a much smaller device that has a similar surface area as a knot but a much smaller volume without interstices for bacterial growth and a better safety profile would have a significant impact in Surgery. Large sutures are typically used for tendon repair in thin skinned areas such as achilles, rotator cuff, or knee, and for abdominal wall reconstruction. Compared to competing anchoring technologies (e.g. staple, corkscrew, tack, and strap) the Pronged Anchor- Clip has several advantages: it withstands soft-tissue loads exceeding the strength of competing devices and the Pronged Anchor-Clip does not injure fascia when applied. The Pronged Anchor-Clip is easier and faster to apply than tying a knot, and its intuitive design fits easily into clinical practice. In addition to the surgical benefits of the project, we will create the first commercial biodegradable high- resolution medical device manufactured by 3D printing. The proprietary co-crosslinker used in this proposal will create a novel PPF resin that can then be 3D printed through digital light processing. This revolutionary new PPF material can be used to create medical devices with micro-features that will eventually be resorbed by the body. This would be unlike any other 3D printed biomedical device. Through our multi-disciplinary collaboration, we will: optimize PPF formulations for 3D printing and confirm design thresholds for the Pronged Anchor-Clip are met; characterize the 3D printed PPF Pronged Anchor-Clips in benchtop testing for: mechanical properties; in vitro degradation rates; potential for infection; and clinically relevant suture retention performance in cadaver tissue models; and lastly, demonstrate PPF Pronged Anchor- Clips respond appropriately for bioincorporation, inflammation, and in vivo degradation in swine relative to a predicate device, per FDA guidance document ISO 10993. At the completion of this proposal we will have established manufacturing and performance proof points; demonstrating the PPF Pronged Anchor-Clip is superior to a bulky knot. In a follow-on Phase II SBIR submission, we will complete validation and verification testing, packaging and sterilization, toxicity testing, ISO 10993-Biological Evaluation of Medical Devices testing and a chronic swine study for FDA 510(k) clearance of the class II device. Development of a biodegradable fixation device with enhanced anchoring strength and reduced inflammation is urgently needed in the field of soft-tissue repair and the proposed material has broader implications in the field of implantable devices.
翻译后摘要:这个SBIR第一阶段项目的目标是证明创建一个3D打印, 生物合成尖头锚钉夹,以克服与大缝线结(来自#5的结)相关的问题 缝线、带式缝线和网状缝线)。目前,较大的缝线结有皮肤糜烂、触诊、疼痛、瘢痕形成的风险, 感染,甚至可能需要再次手术缝合脓肿。用一个更小的装置代替一个结 它具有与结相似的表面积,但体积小得多,没有细菌生长的空隙, 更好的安全性特征将对外科手术产生重大影响。大缝线通常用于肌腱 皮肤较薄的部位,如跟腱、肩袖或膝关节的修复,以及腹壁重建。 与竞争锚定技术(例如,U形钉、开瓶器、大头钉和绑带)相比,尖头锚- 成形夹有几个优点:其承受的软组织载荷超过竞争器械的强度, 在应用时,尖头固定夹不会损伤筋膜。尖头锚钉夹更容易和更快地 应用比打结,其直观的设计很容易适合临床实践。 除了该项目的手术效益外,我们还将创造第一个商业化的可生物降解的高- 高分辨率医疗器械由3D打印制造。本提案中使用的专有共交联剂将 创造一种新型的PPF树脂,然后可以通过数字光处理进行3D打印。这一革命性的新 PPF材料可用于制造具有微特征的医疗装置,所述微特征最终将被微生物吸收。 身体这将不同于任何其他3D打印的生物医学设备。 通过我们的多学科合作,我们将:优化3D打印的PPF配方, 满足尖头锚钉夹的设计阈值;表征3D打印PPF尖头锚钉夹 在台架试验中:机械性能;体外降解速率;感染潜力;以及临床 尸体组织模型中的相关缝线固位性能;最后,展示PPF尖头锚钉- 相对于对照组,夹在猪体内对生物掺入、炎症和体内降解反应适当。 等同器械,依据FDA指南文件ISO 10993。在完成这项建议后,我们将有 建立制造和性能证明点;证明PPF尖头锚钉夹 上级于笨重的结。在后续的第二阶段SBIR提交中,我们将完成确认和验证 试验、包装和灭菌、毒性试验、ISO 10993-医疗器械生物学评价试验 以及II类器械FDA 510(k)批准的慢性猪研究。一种可生物降解 在外科领域中迫切需要具有增强的锚固强度和减少的炎症的固定装置, 软组织修复,并且所提出的材料在可植入装置领域具有更广泛的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Ruppert其他文献

David Ruppert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Ruppert', 18)}}的其他基金

A Biosynthetic Degradable Textile for Soft Tissue Reconstruction
用于软组织重建的生物合成可降解纺织品
  • 批准号:
    10460582
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
A Biosynthetic Degradable Textile for Soft Tissue Reconstruction
用于软组织重建的生物合成可降解纺织品
  • 批准号:
    10325360
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
A Novel Hernia Mesh to Improve Anchor Point Fixation and Prevent Hernia Formation
一种新型疝气网可改善锚点固定并防止疝气形成
  • 批准号:
    9344908
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:

相似海外基金

Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
  • 批准号:
    22K13777
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
  • 批准号:
    10045111
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
  • 批准号:
    2749141
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
  • 批准号:
    10801667
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1738138
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
  • 批准号:
    17K18852
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
  • 批准号:
    1612567
  • 财政年份:
    2016
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1621732
  • 财政年份:
    2016
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了