A Photochemically 3D Printed High-Resolution Biodegradable Suture Retention Clip
光化学 3D 打印高分辨率可生物降解缝合线固定夹
基本信息
- 批准号:10157051
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAbscessAcidosisAffectAreaBiologicalCadaverCharacteristicsChronicCicatrixClinicalClipCrosslinkerDevelopmentDevice or Instrument DevelopmentDevicesDimensionsEngineeringEvaluationExcisionFailureFamily suidaeFasciaForeign BodiesFormulationFumaratesFundingGlycerolGoalsGrowthHerniaHistologicImplantIn VitroInfectionInflammationInterdisciplinary StudyIntuitionInvestigationKneeLasersLigamentsLightMass ChromatographyMechanicsMedicalMedical DeviceMolecular Sieve ChromatographyOperative Surgical ProceduresPainPalpablePatientsPerformancePhasePhysiologicalPlant ResinsPolymersProcessRecurrenceResolutionRiskRotator CuffSafetySamplingScanningScientistSecureSkinSmall Business Innovation Research GrantSpeedSterilizationSurfaceSurgeonSurgical suturesSwellingTechnologyTendon structureTestingThinnessTissue ModelTissuesToxicity TestsUnited StatesUnited States National Institutes of HealthVeterinariansViscosityWidthabdominal wallbasebiodegradable polymerbiomaterial compatibilityclinical practiceclinically relevantcostcrosslinkdesigndigitalexperienceimplantable devicein vivoirritationmechanical loadmechanical propertiesmolecular massnoveloperationphysical propertypoly(propylene fumarate)prematurepreventprototypereconstructionrepairedresponsesample fixationsoft tissuesuccesstissue repairverification and validationwound
项目摘要
Abstract: The goal of this SBIR Phase I project is to demonstrate the feasibility of creating a 3D printed,
biosynthetic Pronged Anchor-Clip to overcome the problems associated with large suture knots (knots from #5
suture, tape suture, and mesh suture). Currently large suture knots risk skin erosion, palpability, pain, scarring,
infection, and may even require re-operation for suture abscess. Replacing a knot with a much smaller device
that has a similar surface area as a knot but a much smaller volume without interstices for bacterial growth and
a better safety profile would have a significant impact in Surgery. Large sutures are typically used for tendon
repair in thin skinned areas such as achilles, rotator cuff, or knee, and for abdominal wall reconstruction.
Compared to competing anchoring technologies (e.g. staple, corkscrew, tack, and strap) the Pronged Anchor-
Clip has several advantages: it withstands soft-tissue loads exceeding the strength of competing devices and
the Pronged Anchor-Clip does not injure fascia when applied. The Pronged Anchor-Clip is easier and faster to
apply than tying a knot, and its intuitive design fits easily into clinical practice.
In addition to the surgical benefits of the project, we will create the first commercial biodegradable high-
resolution medical device manufactured by 3D printing. The proprietary co-crosslinker used in this proposal will
create a novel PPF resin that can then be 3D printed through digital light processing. This revolutionary new
PPF material can be used to create medical devices with micro-features that will eventually be resorbed by the
body. This would be unlike any other 3D printed biomedical device.
Through our multi-disciplinary collaboration, we will: optimize PPF formulations for 3D printing and confirm
design thresholds for the Pronged Anchor-Clip are met; characterize the 3D printed PPF Pronged Anchor-Clips
in benchtop testing for: mechanical properties; in vitro degradation rates; potential for infection; and clinically
relevant suture retention performance in cadaver tissue models; and lastly, demonstrate PPF Pronged Anchor-
Clips respond appropriately for bioincorporation, inflammation, and in vivo degradation in swine relative to a
predicate device, per FDA guidance document ISO 10993. At the completion of this proposal we will have
established manufacturing and performance proof points; demonstrating the PPF Pronged Anchor-Clip is
superior to a bulky knot. In a follow-on Phase II SBIR submission, we will complete validation and verification
testing, packaging and sterilization, toxicity testing, ISO 10993-Biological Evaluation of Medical Devices testing
and a chronic swine study for FDA 510(k) clearance of the class II device. Development of a biodegradable
fixation device with enhanced anchoring strength and reduced inflammation is urgently needed in the field of
soft-tissue repair and the proposed material has broader implications in the field of implantable devices.
摘要:SBIR 第一阶段项目的目标是展示创建 3D 打印、
生物合成尖头锚夹可克服与大缝合结(来自 #5 的结)相关的问题
缝合、胶带缝合和网状缝合)。目前,大的缝合结有皮肤糜烂、可触知、疼痛、疤痕的风险,
感染,甚至可能需要再次手术缝合脓肿。用更小的设备代替结
具有与结相似的表面积,但体积小得多,没有细菌生长的间隙,
更好的安全性将对手术产生重大影响。大缝线通常用于肌腱
修复跟腱、肩袖或膝盖等薄皮肤区域,以及腹壁重建。
与竞争性锚固技术(例如订书钉、螺旋形、平头钉和带子)相比,叉形锚固
Clip 具有多个优点:它能承受超过竞争设备强度的软组织负载,并且
使用时,尖头锚夹不会损伤筋膜。叉形锚夹更容易、更快速
无需打结,其直观的设计很容易融入临床实践。
除了该项目的手术效益外,我们还将创造第一个商业化的可生物降解的高
通过3D打印制造的分辨率医疗设备。本提案中使用的专有共交联剂将
创建一种新型 PPF 树脂,然后可以通过数字光处理进行 3D 打印。这个革命性的新
PPF 材料可用于制造具有微观特征的医疗设备,这些特征最终会被
身体。这与任何其他 3D 打印生物医学设备不同。
通过我们的多学科合作,我们将: 优化 3D 打印的 PPF 配方并确认
满足叉式锚固夹的设计阈值;描述 3D 打印 PPF 叉形锚夹的特征
台式测试:机械性能;体外降解率;感染的可能性;并在临床上
尸体组织模型中相关缝线保留性能;最后,展示 PPF 管脚锚-
与猪相比,夹子对生物结合、炎症和体内降解有适当的反应
谓词设备,根据 FDA 指导文件 ISO 10993。完成本提案后,我们将
建立制造和性能证明点;演示 PPF 叉形锚夹
优于笨重的结。在后续的第二阶段 SBIR 提交中,我们将完成验证和验证
测试、包装和灭菌、毒性测试、ISO 10993-医疗器械生物评价测试
以及针对 II 类设备 FDA 510(k) 清除的长期猪研究。开发可生物降解的
该领域迫切需要一种增强锚固强度、减少炎症的固定装置
软组织修复和拟议的材料在植入设备领域具有更广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Ruppert其他文献
David Ruppert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Ruppert', 18)}}的其他基金
A Biosynthetic Degradable Textile for Soft Tissue Reconstruction
用于软组织重建的生物合成可降解纺织品
- 批准号:
10460582 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
A Biosynthetic Degradable Textile for Soft Tissue Reconstruction
用于软组织重建的生物合成可降解纺织品
- 批准号:
10325360 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
A Novel Hernia Mesh to Improve Anchor Point Fixation and Prevent Hernia Formation
一种新型疝气网可改善锚点固定并防止疝气形成
- 批准号:
9344908 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant














{{item.name}}会员




