A Photochemically 3D Printed High-Resolution Biodegradable Suture Retention Clip
光化学 3D 打印高分辨率可生物降解缝合线固定夹
基本信息
- 批准号:10157051
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAbscessAcidosisAffectAreaBiologicalCadaverCharacteristicsChronicCicatrixClinicalClipCrosslinkerDevelopmentDevice or Instrument DevelopmentDevicesDimensionsEngineeringEvaluationExcisionFailureFamily suidaeFasciaForeign BodiesFormulationFumaratesFundingGlycerolGoalsGrowthHerniaHistologicImplantIn VitroInfectionInflammationInterdisciplinary StudyIntuitionInvestigationKneeLasersLigamentsLightMass ChromatographyMechanicsMedicalMedical DeviceMolecular Sieve ChromatographyOperative Surgical ProceduresPainPalpablePatientsPerformancePhasePhysiologicalPlant ResinsPolymersProcessRecurrenceResolutionRiskRotator CuffSafetySamplingScanningScientistSecureSkinSmall Business Innovation Research GrantSpeedSterilizationSurfaceSurgeonSurgical suturesSwellingTechnologyTendon structureTestingThinnessTissue ModelTissuesToxicity TestsUnited StatesUnited States National Institutes of HealthVeterinariansViscosityWidthabdominal wallbasebiodegradable polymerbiomaterial compatibilityclinical practiceclinically relevantcostcrosslinkdesigndigitalexperienceimplantable devicein vivoirritationmechanical loadmechanical propertiesmolecular massnoveloperationphysical propertypoly(propylene fumarate)prematurepreventprototypereconstructionrepairedresponsesample fixationsoft tissuesuccesstissue repairverification and validationwound
项目摘要
Abstract: The goal of this SBIR Phase I project is to demonstrate the feasibility of creating a 3D printed,
biosynthetic Pronged Anchor-Clip to overcome the problems associated with large suture knots (knots from #5
suture, tape suture, and mesh suture). Currently large suture knots risk skin erosion, palpability, pain, scarring,
infection, and may even require re-operation for suture abscess. Replacing a knot with a much smaller device
that has a similar surface area as a knot but a much smaller volume without interstices for bacterial growth and
a better safety profile would have a significant impact in Surgery. Large sutures are typically used for tendon
repair in thin skinned areas such as achilles, rotator cuff, or knee, and for abdominal wall reconstruction.
Compared to competing anchoring technologies (e.g. staple, corkscrew, tack, and strap) the Pronged Anchor-
Clip has several advantages: it withstands soft-tissue loads exceeding the strength of competing devices and
the Pronged Anchor-Clip does not injure fascia when applied. The Pronged Anchor-Clip is easier and faster to
apply than tying a knot, and its intuitive design fits easily into clinical practice.
In addition to the surgical benefits of the project, we will create the first commercial biodegradable high-
resolution medical device manufactured by 3D printing. The proprietary co-crosslinker used in this proposal will
create a novel PPF resin that can then be 3D printed through digital light processing. This revolutionary new
PPF material can be used to create medical devices with micro-features that will eventually be resorbed by the
body. This would be unlike any other 3D printed biomedical device.
Through our multi-disciplinary collaboration, we will: optimize PPF formulations for 3D printing and confirm
design thresholds for the Pronged Anchor-Clip are met; characterize the 3D printed PPF Pronged Anchor-Clips
in benchtop testing for: mechanical properties; in vitro degradation rates; potential for infection; and clinically
relevant suture retention performance in cadaver tissue models; and lastly, demonstrate PPF Pronged Anchor-
Clips respond appropriately for bioincorporation, inflammation, and in vivo degradation in swine relative to a
predicate device, per FDA guidance document ISO 10993. At the completion of this proposal we will have
established manufacturing and performance proof points; demonstrating the PPF Pronged Anchor-Clip is
superior to a bulky knot. In a follow-on Phase II SBIR submission, we will complete validation and verification
testing, packaging and sterilization, toxicity testing, ISO 10993-Biological Evaluation of Medical Devices testing
and a chronic swine study for FDA 510(k) clearance of the class II device. Development of a biodegradable
fixation device with enhanced anchoring strength and reduced inflammation is urgently needed in the field of
soft-tissue repair and the proposed material has broader implications in the field of implantable devices.
摘要:SBIR第一期项目的目标是证明创建3D打印,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Ruppert其他文献
David Ruppert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Ruppert', 18)}}的其他基金
A Biosynthetic Degradable Textile for Soft Tissue Reconstruction
用于软组织重建的生物合成可降解纺织品
- 批准号:
10460582 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
A Biosynthetic Degradable Textile for Soft Tissue Reconstruction
用于软组织重建的生物合成可降解纺织品
- 批准号:
10325360 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
A Novel Hernia Mesh to Improve Anchor Point Fixation and Prevent Hernia Formation
一种新型疝气网可改善锚点固定并防止疝气形成
- 批准号:
9344908 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant














{{item.name}}会员




