I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
基本信息
- 批准号:1612567
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-15 至 2016-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Acute and chronic orthopedic injuries to articulating joints (knee, shoulder, and hip) typically affect and compromise the structural integrity of cartilage and bone. Current treatments can be extremely invasive, such as total hip and knee metallic implants. Other treatment options focusing on graft tissue, cadaver and synthetic material have had limited clinical success. In addition, a large segment of this population is pediatric. Pediatric patients cannot receive a total joint replacement, and, thus, are confined to less effective graft-based approaches. Another potential segment lies in sports medicine, where our system could repair large and complex injuries quickly and restore athletes to pre-injury levels of performance. The proposed technology would provide an easy-to-use, effective and permanent option while reducing surgical procedure time and patient recovery time. This would in turn provide hospitals and surgeons with a highly viable regenerative device for those patients suffering from advanced joint injury, but who are not viable candidates for total joint replacement. This I-Corps team has developed a highly engineered, patient specific, three-dimensional (3D) biologically inspired implant for treatment of disrupted, unstable osteochondral defects using our previously developed novel 3D printing techniques and nanomaterials. This team proposes to use computer aided design (CAD), along with 3D printing, to fabricate functional 3D osteochondral implants from these advanced nanomaterial composites. We propose to carry out a project in order to optimize the composition of our materials and 3D printed design for manufacture. Participation in the I-Corps and funding provided will further customer discovery, especially in the targeted pediatric and sports medicine customer segments, inform design modifications to the existing proposed prototype and catalyze efforts to generate funding for late stage R&D activities in small animal and large animal models. These research models are essential for final scientific validation and will allow the team to move forward with pursuit of investment from private capital sources and industry partnerships, as well as moving forward with FDA approval.
关节(膝、肩和髋)的急性和慢性骨科损伤通常会影响和损害软骨和骨的结构完整性。目前的治疗可能是非常侵入性的,如全髋关节和膝关节金属植入物。其他针对移植物组织、尸体和合成材料的治疗选择的临床成功有限。 此外,这一人群的很大一部分是儿科。儿科患者不能接受全关节置换术,因此只能采用效果较差的基于移植物的方法。另一个潜在的领域是运动医学,我们的系统可以快速修复大型和复杂的损伤,并使运动员恢复到受伤前的表现水平。拟议的技术将提供一种易于使用、有效和永久的选择,同时减少手术时间和患者恢复时间。这将反过来为医院和外科医生提供高度可行的再生装置,用于患有晚期关节损伤但不适合全关节置换的患者。这个I-Corps团队开发了一种高度工程化的,患者特定的,三维(3D)生物灵感的植入物,用于使用我们以前开发的新型3D打印技术和纳米材料治疗破坏,不稳定的骨软骨缺损。该团队建议使用计算机辅助设计(CAD),沿着3D打印,从这些先进的纳米材料复合材料中制造功能性3D骨软骨植入物。我们建议开展一个项目,以优化我们的材料组成和3D打印设计。参与I-Corps并提供资金将进一步发现客户,特别是在目标儿科和运动医学客户群中,为现有拟议原型的设计修改提供信息,并促进为小动物和大型动物模型的后期研发活动提供资金的努力。这些研究模型对于最终的科学验证至关重要,并将使该团队能够继续寻求私人资本来源和行业合作伙伴的投资,并获得FDA的批准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lijie Grace Zhang其他文献
Testing of a 3D printed, nanostructured osteochondral implant for knee repair in a small animal model
在小动物模型中测试用于膝关节修复的 3D 打印纳米结构骨软骨植入物
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
N. Arumugasaamy;J. Fisher;N. Gandhi;B. Holmes;Kuo C;M. Oetgen;Cristina Rossi;Lijie Grace Zhang - 通讯作者:
Lijie Grace Zhang
Design a Biologically Inspired Nanostructured Coating for Better Osseointegration
设计受生物启发的纳米结构涂层以实现更好的骨整合
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Mian Wang;Jian Li;M. Keidar;Lijie Grace Zhang - 通讯作者:
Lijie Grace Zhang
Development of a Biomimetic Electrospun Microfibrous Scaffold With Multiwall Carbon Nanotubes for Cartilage Regeneration
开发用于软骨再生的仿生静电纺丝微纤维支架与多壁碳纳米管
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
B. Holmes;Nathan J. Castro;Jian Li;Lijie Grace Zhang - 通讯作者:
Lijie Grace Zhang
Enhanced Human Bone Marrow Mesenchymal Stem Cell Chondrogenic Differentiation on Cold Atmospheric Plasma Modified Cartilage Scaffold
冷大气等离子体修饰软骨支架增强人骨髓间充质干细胞软骨形成分化
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Wei Zhu;M. Keidar;Lijie Grace Zhang - 通讯作者:
Lijie Grace Zhang
Experimental and theoretical studies of tumor growth
肿瘤生长的实验和理论研究
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Hao Sun;Timothy Eswothy;Kerlin P. Robert;Jiaoyan Li;Lijie Grace Zhang;James D. Lee - 通讯作者:
James D. Lee
Lijie Grace Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lijie Grace Zhang', 18)}}的其他基金
I-Corps: 3D Bioprinted Cardiac Tissue Patch for Heart Repair
I-Corps:用于心脏修复的 3D 生物打印心脏组织补片
- 批准号:
2333048 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Understanding Multi-stage Neural Stem Cell Function via 4D Bioprinting Reprogrammable System
通过 4D 生物打印可重编程系统了解多阶段神经干细胞功能
- 批准号:
2110842 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: 4D Bioprinting of Near-infrared Light Responsive Smart Constructs for Pluripotent Stem Cell Derived Cardiomyocyte Engineering
合作研究:用于多能干细胞衍生心肌细胞工程的近红外光响应智能结构的 4D 生物打印
- 批准号:
1856321 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EAGER: 4D Bioprinting of Smart Complex Tissue Constructs
EAGER:智能复杂组织结构的 4D 生物打印
- 批准号:
1642186 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
UNS: Integrating 3D Bioprinting and Biologically Inspired Nanomaterials for Cartilage Regeneration
UNS:整合 3D 生物打印和生物启发纳米材料用于软骨再生
- 批准号:
1510561 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
A Novel 3D Bioprinted Smart Vascularized Nano Tissue
新型 3D 生物打印智能血管化纳米组织
- 批准号:
8755143 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别: