Reading workstation for clinical contrast echocardiography

临床造影超声心动图读取工作站

基本信息

  • 批准号:
    10155647
  • 负责人:
  • 金额:
    $ 25.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2022-02-28
  • 项目状态:
    已结题

项目摘要

Proposal Summary There is increasing appreciation of a syndrome in which patients female patients, present with chest pain due to myocardial ischemia and have a normal or near normal coronary angiogram. Termed coronary microvascular dysfunction (MVD) this disorder is not benign with cardiovascular event rates similar to those with established coronary artery disease. Clinical tools are therefore needed to both identify MVD patients and better understand the mechanisms causing myocardial ischemia. There is evidence that myocardial contrast echocardiography (MCE) provides incremental information in the evaluation of patients with coronary artery disease, myocardial viability, or diseases of the microvasculature. Despite data demonstrating the diagnostic and prognostic benefit of MCE in evaluating patients with MVD, its clinical use has been limited to only a handful of experts in the field, because there are currently no widely available clinical tools to support MCE quantitative analysis and interpretation. The overall aim of this Phase I proposal is to provide clinicians with a new tool to evaluate the myocardial flow-function relationship that is critical to identifying patients with MVD by using echocardiography. We will develop clinical software that can rapidly process MCE data into a standardized, quantitative and easy- to- interpret format. In Aim 1, the power of image averaging and computer aided assessment of radial wall thickening will be used to enhance the current standard of care which relies solely on readers' visual estimation of segmental function. An algorithm will be developed to rearrange the order of images so that images representing the same phase of the cardiac cycle are grouped together. Functional analysis will then be developed using computer-aided tracings of epicardial and endocardial borders. In Aim 2, a software module for quantitative analysis of real-time MCE perfusion will be developed that will incorporate statistical confidence, derived from the performance of image processing algorithms to inform the interpreter about the data strength. Machine learning will be utilized to train and deploy a neural network for the pixel-by-pixel assessment of myocardial perfusion. In Aim 3, we will combine myocardial perfusion and function modules into a novel, perfusion-function mode of imaging (PF-mode). This new mode will be applied to an archival sample of clinically diagnosed MVD cases to demonstrate the feasibility to detect abnormalities in the myocardial flow-function relationship. The composite PF-mode will include a cine-loop rendered for one cardiac cycle where parametric images (perfusion) are superimposed over averaged ultrasound images with an overlay of graphic representation of wall thickness (function). This novel mode of imaging provides the means to diagnose MVD in a single clinical study.
提案摘要 人们越来越认识到一种女性患者出现胸部症状的综合征 心肌缺血引起的疼痛,冠状动脉造影正常或接近正常。术语 冠状动脉微血管功能障碍 (MVD) 这种疾病对于心血管事件发生率来说不是良性的 与患有冠状动脉疾病的人相似。因此,两者都需要临床工具 识别 MVD 患者并更好地了解引起心肌缺血的机制。有 有证据表明,心肌造影超声心动图 (MCE) 可提供增量信息 评估患有冠状动脉疾病、心肌活力或其他疾病的患者 微血管系统。尽管数据表明 MCE 在诊断和预后方面具有优势 评估 MVD 患者时,其临床应用仅限于该领域的少数专家, 因为目前还没有广泛可用的临床工具来支持 MCE 定量分析和 解释。第一阶段提案的总体目标是为临床医生提供一种新工具 评估心肌血流功能关系,这对于识别 MVD 患者至关重要 使用超声心动图。我们将开发能够快速将 MCE 数据处理为 标准化、定量且易于解释的格式。在目标 1 中,图像平均和 径向壁增厚的计算机辅助评估将用于提高当前的护理标准 它完全依赖于读者对分段功能的视觉估计。将开发一种算法 重新排列图像的顺序,以便代表心动周期相同阶段的图像 分组在一起。然后将使用计算机辅助心外膜追踪来开发功能分析 和心内膜边界。在目标2中,用于实时MCE定量分析的软件模块 将开发灌注,其中将包含来自性能的统计置信度 图像处理算法告知解释器数据强度。机器学习将 用于训练和部署神经网络,以逐像素评估心肌灌注。 在目标 3 中,我们将把心肌灌注和功能模块结合成一种新颖的灌注功能 成像模式(PF 模式)。这种新模式将应用于临床诊断的档案样本 MVD 案例证明检测心肌血流功能异常的可行性 关系。复合 PF 模式将包括为一个心动周期渲染的电影循环,其中 参数图像(灌注)叠加在平均超声图像上,叠加 壁厚的图形表示(函数)。这种新颖的成像模式提供了 在单一临床研究中诊断 MVD。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Perez Davidson其他文献

Brian Perez Davidson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 25.24万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 25.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 25.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 25.24万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 25.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 25.24万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 25.24万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 25.24万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 25.24万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 25.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了