Reading workstation for clinical contrast echocardiography

临床造影超声心动图读取工作站

基本信息

  • 批准号:
    10155647
  • 负责人:
  • 金额:
    $ 25.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2022-02-28
  • 项目状态:
    已结题

项目摘要

Proposal Summary There is increasing appreciation of a syndrome in which patients female patients, present with chest pain due to myocardial ischemia and have a normal or near normal coronary angiogram. Termed coronary microvascular dysfunction (MVD) this disorder is not benign with cardiovascular event rates similar to those with established coronary artery disease. Clinical tools are therefore needed to both identify MVD patients and better understand the mechanisms causing myocardial ischemia. There is evidence that myocardial contrast echocardiography (MCE) provides incremental information in the evaluation of patients with coronary artery disease, myocardial viability, or diseases of the microvasculature. Despite data demonstrating the diagnostic and prognostic benefit of MCE in evaluating patients with MVD, its clinical use has been limited to only a handful of experts in the field, because there are currently no widely available clinical tools to support MCE quantitative analysis and interpretation. The overall aim of this Phase I proposal is to provide clinicians with a new tool to evaluate the myocardial flow-function relationship that is critical to identifying patients with MVD by using echocardiography. We will develop clinical software that can rapidly process MCE data into a standardized, quantitative and easy- to- interpret format. In Aim 1, the power of image averaging and computer aided assessment of radial wall thickening will be used to enhance the current standard of care which relies solely on readers' visual estimation of segmental function. An algorithm will be developed to rearrange the order of images so that images representing the same phase of the cardiac cycle are grouped together. Functional analysis will then be developed using computer-aided tracings of epicardial and endocardial borders. In Aim 2, a software module for quantitative analysis of real-time MCE perfusion will be developed that will incorporate statistical confidence, derived from the performance of image processing algorithms to inform the interpreter about the data strength. Machine learning will be utilized to train and deploy a neural network for the pixel-by-pixel assessment of myocardial perfusion. In Aim 3, we will combine myocardial perfusion and function modules into a novel, perfusion-function mode of imaging (PF-mode). This new mode will be applied to an archival sample of clinically diagnosed MVD cases to demonstrate the feasibility to detect abnormalities in the myocardial flow-function relationship. The composite PF-mode will include a cine-loop rendered for one cardiac cycle where parametric images (perfusion) are superimposed over averaged ultrasound images with an overlay of graphic representation of wall thickness (function). This novel mode of imaging provides the means to diagnose MVD in a single clinical study.
提案摘要 越来越多的人认识到一种综合征,其中女性患者, 由于心肌缺血引起的疼痛,冠状动脉造影正常或接近正常。称为 冠状动脉微血管功能障碍(MVD),这种疾病不是良性的心血管事件发生率 类似于已确诊的冠状动脉疾病患者。因此,需要临床工具, 识别MVD患者,更好地了解导致心肌缺血的机制。有 心肌造影超声心动图(MCE)提供了增加的信息, 评价患有冠状动脉疾病、心肌存活性或 微脉管系统尽管有数据表明MCE在诊断和预后方面的益处, 评估患有MVD的患者,其临床使用仅限于该领域的少数专家, 因为目前没有广泛可用的临床工具来支持MCE定量分析, 解释。第一阶段提案的总体目标是为临床医生提供一种新的工具, 评价心肌血流-功能关系,这对识别MVD患者至关重要, 使用超声心动图。我们将开发临床软件,可以快速处理MCE数据, 标准化、量化和易于解释的格式。在目标1中,图像平均的能力和 放射状壁增厚的计算机辅助评估将用于提高当前的护理标准 其仅依赖于读者对节段功能的视觉估计。将开发一种算法, 重新排列图像的顺序,使得表示心动周期的相同相位的图像被 聚集在一起。功能分析将使用计算机辅助描记心外膜 和内部边界。在目标2中,实时MCE定量分析软件模块 灌注将被开发,将纳入统计置信度,来自性能 图像处理算法,以通知解释器关于数据强度。机器学习将是 用于训练和部署神经网络,以逐像素评估心肌灌注。 在目标3中,我们将联合收割机心肌灌注和功能模块组合成一个新的灌注功能 成像模式(PF模式)。这种新模式将应用于临床诊断的存档样本 MVD病例证明检测心肌血流功能异常的可行性 关系复合PF模式将包括为一个心动周期渲染的电影循环,其中 参数图像(灌注)叠加在平均超声图像上, 壁厚(函数)的图形表示。这种新的成像模式提供了一种手段, 在单一临床研究中诊断MVD。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Perez Davidson其他文献

Brian Perez Davidson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 25.24万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 25.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 25.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 25.24万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 25.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 25.24万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 25.24万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 25.24万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 25.24万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 25.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了