Statistical developments for biomarker and diagnostic test evaluation with applications to Alzheimer's disease

生物标志物和诊断测试评估的统计发展及其在阿尔茨海默病中的应用

基本信息

  • 批准号:
    10155992
  • 负责人:
  • 金额:
    $ 3.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-12-30 至 2024-12-29
  • 项目状态:
    已结题

项目摘要

Project Summary Agreement studies, used in the evaluation of newly-developed biomarkers and diagnostic tests, depend upon statistical methods proposed nearly 50 years ago. As Alzheimer’s disease has entered into an era where neuroimaging biomarkers are incorporated into the diagnostic strategy, the progression of our statistical methods must match that of our medical growth. These statistical methods contain significant flaws, such as depending on sample disease prevalence, having complex interpretations, imposing restrictive experimental designs and failing to account for risk factors. The current proposal seeks to advance the statistical methods used in the development of biomarkers and diagnostics, and, in doing so, will identify characteristics important for diagnosing and predicting Alzheimer’s disease status. We hypothesize that our novel statistical contributions will correct these flaws in our approach to biomarker and diagnostic test development. It will allow for a more informative, interpretable and robust way to quantify the agreement and accuracy of medical tests. For our first aim, we will develop a novel statistical methodology to quantify agreement, centering our framework on mixed effect models. We will compare our approach with traditional methods among providers evaluating neuroimaging biomarkers. We will leverage data from the NIA- funded R01 Alzheimer’s Prevention through Exercise (APEx) study and enhance it with primary data collection of neuroimaging interpretations by a diverse sample of providers. For our second aim, we will determine how the sampling design of contemporary agreement studies influence predictive accuracy. Simulation “in-silico” studies will be performed, reproducing many scenarios present in the literature. Additionally, data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) will be leveraged and measures informing accuracy, such as sensitivity and specificity, will be calculated. We will do so under traditional approaches and our novel statistical framework, demonstrating that current methods are merely a special case of our more robust model. This will highlight limitations of current approaches. The broad, long term objectives of this proposal are two-fold. First, we aim to develop a robust and generalized statistical method for evaluating agreement and accuracy of biomarkers and diagnostic tests. By using mixed effects models and corresponding sampling designs, we will overcome flaws present in traditional approaches and gain advantages, such as easily interpreted measures and generalizable results. The second objective is to facilitate a rigorous training plan that will provide a foundation for my future career as a physician-statistician who focuses on biomarker methodology. While the combination of these objectives aligns with the purpose of my current MD-PhD program and this NIH Pre-doctoral Training F30 award, the statistical advancements are applicable to any medical condition, and thus are poised to have a strong impact on biomedical science.
项目摘要 用于评估新开发的生物标志物和诊断测试的一致性研究取决于 近50年前提出的统计方法。随着阿尔茨海默病进入一个时代, 神经影像学生物标志物被纳入诊断策略,我们的统计学进展 方法必须与我们的医学发展相匹配。这些统计方法包含重大缺陷,例如 取决于样本疾病流行率,具有复杂的解释,实施限制性实验 设计和未能考虑到风险因素。目前的建议旨在改进统计方法, 用于生物标志物和诊断的发展,并在这样做,将确定重要的特征, 用于诊断和预测阿尔茨海默病的状态。 我们假设,我们新的统计贡献将纠正我们的生物标志物方法中的这些缺陷, 和诊断测试开发。它将提供一种信息量更大、更可解释和更有力的方式来量化 医学测试的一致性和准确性。对于我们的第一个目标,我们将开发一种新的统计方法 量化协议,集中我们的框架上的混合效应模型。我们将比较我们的方法与 评估神经影像学生物标志物的提供者之间的传统方法。我们将利用国家情报局的数据- 资助的R 01通过运动预防阿尔茨海默氏症(APEx)研究,并通过原始数据收集加强它 神经影像学解释的不同样本的供应商。对于我们的第二个目标,我们将确定如何 当代一致性研究的抽样设计影响预测准确性。模拟“计算机模拟” 将进行研究,再现文献中提出的许多设想。此外,来自 阿尔茨海默病神经影像学倡议(ADNI)将被利用和措施,告知准确性, 将计算灵敏度和特异性。我们将在传统方法和我们的小说中这样做。 统计框架,表明目前的方法只是我们更强大的模型的一个特例。 这将突出当前方法的局限性。 这项建议的广泛和长期目标是双重的。首先,我们的目标是建立一个强大的, 用于评价生物标志物和诊断测试的一致性和准确性的通用统计方法。通过 使用混合效应模型和相应的抽样设计,我们将克服传统方法中存在的缺陷, 方法,并获得优势,如易于解释的措施和推广的结果。第二 我的目标是促进一个严格的培训计划,这将为我未来的职业生涯奠定基础, 专注于生物标志物方法学的医生-统计学家。虽然这些目标的结合 与我目前的MD-PhD计划和这个NIH博士前培训F30奖的目的,统计 这些进步适用于任何医疗条件,因此有望对 生物医学科学

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katelyn A McKenzie其他文献

Katelyn A McKenzie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katelyn A McKenzie', 18)}}的其他基金

Statistical developments for biomarker and diagnostic test evaluation with applications to Alzheimer's disease
生物标志物和诊断测试评估的统计发展及其在阿尔茨海默病中的应用
  • 批准号:
    10530697
  • 财政年份:
    2020
  • 资助金额:
    $ 3.45万
  • 项目类别:
Statistical developments for biomarker and diagnostic test evaluation with applications to Alzheimer's disease
生物标志物和诊断测试评估的统计发展及其在阿尔茨海默病中的应用
  • 批准号:
    10399993
  • 财政年份:
    2020
  • 资助金额:
    $ 3.45万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 3.45万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 3.45万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.45万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.45万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.45万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 3.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 3.45万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 3.45万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 3.45万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 3.45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了