Role of newly discovered SLFN14 in megakaryopoiesis and platelet development

新发现的SLFN14在巨核细胞生成和血小板发育中的作用

基本信息

  • 批准号:
    10158537
  • 负责人:
  • 金额:
    $ 54.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-05 至 2022-08-01
  • 项目状态:
    已结题

项目摘要

The novel hematopoietic-specific SLFN14 endoribonuclease was initially discovered during the search for ribonucleases responsible for general translation control. Simultaneously, missense mutations were identified in a novel gene, SLFN14, in patients with a dominantly inherited form of thrombocytopenia, associated with excessive bleeding. Considering that SLFN14 is a key regulator of megakaryopoiesis and of structural development of platelets, we plan to use an integral approach to investigate the role of SLFN14 in platelet biogenesis. We will employ novel SLFN14 mouse models and inducible Pluripotent Stem Cell (iPSC) derived megakaryocytes (MKs) expressing SLFN14 patient mutations, in conjunction with biochemical, molecular biology, cellular biology techniques, and structural analysis via cryo-electron microscopy (cryo-EM). More specifically we will investigate how SLFN14 controls platelet formation and function by studying a platelet and megakaryocyte specific SLFN14 conditional knock-out mouse and knock-in mice with the K218E and K219N point mutations, with an initial phenotype analogous with human patients, alongside iPSC-derived megakaryocytes bearing patient SLFN14 mutations, created using CRISPR genome-editing, which we have already generated. To give further clues to the mechanism through which SLFN14 may regulate megakaryopoiesis, signaling, dense granule formation, platelet formation and activation, we will use RNA sequencing to analyze alterations in gene expression and the regulation of genes in MKs derived from our SLFN14-KO and SLFN14-KI mutant mice. Gene transcriptome and bioinformatic data analysis will define altered gene expression of upregulated/downregulated genes known or predicted to be associated with MK differentiation, maturation, platelet formation and function, as a result of SLFN14 mutation. Thermodynamics and kinetics of SLFN14-dependent RNA degradation in MKs and platelets derived from mutant mice and iPSCs will be studied. Identification of the SLFN14-specific cleavage sites within rRNA by footprinting analysis in the primary mouse platelets and iPSC-derived MKs will reveal sequence/structure cleavage specificity of the protein. To unveil whether SLFN14 disrupts the translational machinery by restricting cytoplasmic rRNA/tRNA/mRNA in iPSC-derived MKs and mouse platelets, polysome profiling and non-canonical amino acid labelling techniques will be utilized. Employment of selective inhibitors for the major degradation systems in iPSCs will reveal the degradation pathway underlying the autosomal dominant SLFN14-related thrombocytopenia. Mutational studies of SLFN14’s oligomerization motifs, endoribonuclease core, ribosomal binding and helicase domains coupled with the set of in vitro and in vivo assays will establish structure-function relationships of the protein. Binding partners of SLFN14 in MKs will be characterized. Structural analysis of SLFN14-associated 80S ribosomes and oligomeric forms of SLFN14 by cryo-EM will also be performed.
新的造血特异性SLFN 14核糖核酸内切酶最初是在寻找 负责一般翻译控制的核糖核酸酶。与此同时,错义突变被确定在 显性遗传性血小板减少症患者中的一种新基因SLFN 14与以下疾病相关 出血过多。考虑到SLFN 14是巨核细胞生成和结构分化的关键调节因子, 血小板的发育,我们计划使用积分方法来研究SLFN 14在血小板中的作用, 生物起源。我们将采用新的SLFN 14小鼠模型和诱导型多能干细胞(iPSC)衍生的细胞。 表达SLFN 14患者突变的巨核细胞(MK),结合生物化学、分子生物学和免疫组织化学, 生物学、细胞生物学技术和通过冷冻电子显微镜(cryo-EM)进行的结构分析。更 具体地说,我们将通过研究血小板来研究SLFN 14如何控制血小板的形成和功能, 巨核细胞特异性SLFN 14条件性敲除小鼠和K218 E和K219 N敲入小鼠 点突变,具有与人类患者类似的初始表型,以及iPSC衍生的 携带患者SLFN 14突变的巨核细胞,使用CRISPR基因组编辑创建,我们已经 已经生成。为了进一步了解SLFN 14可能通过何种机制调节 巨核细胞生成,信号传导,致密颗粒形成,血小板形成和活化,我们将使用RNA 测序分析基因表达的改变和来自我们的MK中基因的调节, SLFN 14-KO和SLFN 14-KI突变小鼠。基因转录组和生物信息学数据分析将定义改变的 已知或预测与MK相关的上调/下调基因的基因表达 分化、成熟、血小板形成和功能,作为SLFN 14突变的结果。热力学和 SLFN 14依赖性RNA在衍生自突变小鼠和iPSC的MK和血小板中降解的动力学将 被研究。通过足迹法分析鉴定rRNA内SLFN 14特异性切割位点, 原代小鼠血小板和iPSC衍生的MK将揭示蛋白质的序列/结构切割特异性。 为了揭示SLFN 14是否通过限制细胞质中的rRNA/tRNA/mRNA来破坏翻译机制, iPSC衍生的MK和小鼠血小板、多核糖体分析和非规范氨基酸标记技术 将被利用。在iPSC中主要降解系统的选择性抑制剂的使用将揭示iPSC中的主要降解系统。 这是常染色体显性SLFN 14相关血小板减少症的潜在降解途径。突变研究 SLFN 14的寡聚化基序、核糖核酸内切酶核心、核糖体结合和解旋酶结构域偶联 通过一组体外和体内测定将建立蛋白质的结构-功能关系。结合 将对MK中SLFN 14的合作伙伴进行表征。SLFN 14相关的80 S核糖体的结构分析和 还将进行通过冷冻-EM检测SLFN 14的寡聚体形式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neil Morgan其他文献

Neil Morgan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neil Morgan', 18)}}的其他基金

Role of newly discovered SLFN14 in megakaryopoiesis and platelet development
新发现的SLFN14在巨核细胞生成和血小板发育中的作用
  • 批准号:
    9884402
  • 财政年份:
    2020
  • 资助金额:
    $ 54.43万
  • 项目类别:

相似海外基金

Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
  • 批准号:
    502556
  • 财政年份:
    2024
  • 资助金额:
    $ 54.43万
  • 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
  • 批准号:
    10659303
  • 财政年份:
    2023
  • 资助金额:
    $ 54.43万
  • 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
  • 批准号:
    10674405
  • 财政年份:
    2023
  • 资助金额:
    $ 54.43万
  • 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
  • 批准号:
    10758772
  • 财政年份:
    2023
  • 资助金额:
    $ 54.43万
  • 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
  • 批准号:
    10676499
  • 财政年份:
    2023
  • 资助金额:
    $ 54.43万
  • 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
  • 批准号:
    2748611
  • 财政年份:
    2022
  • 资助金额:
    $ 54.43万
  • 项目类别:
    Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
  • 批准号:
    10532032
  • 财政年份:
    2022
  • 资助金额:
    $ 54.43万
  • 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
  • 批准号:
    22K05630
  • 财政年份:
    2022
  • 资助金额:
    $ 54.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
  • 批准号:
    10525070
  • 财政年份:
    2022
  • 资助金额:
    $ 54.43万
  • 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
  • 批准号:
    10689017
  • 财政年份:
    2022
  • 资助金额:
    $ 54.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了