AI2AMP-PD: Accelerating Parkinsons Diagnosis using Multi-omics and Artificial Intelligence
AI2AMP-PD:利用多组学和人工智能加速帕金森病诊断
基本信息
- 批准号:10157680
- 负责人:
- 金额:$ 53.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectArtificial IntelligenceBiological MarkersBlood CellsBlood specimenBrainBrain DiseasesClinicalClinical TrialsCodeCognitiveCross-Sectional StudiesDNAData AnalyticsData SetDevelopmentDiagnosisDiseaseEnhancersEvaluationFutureGene ExpressionGenesGenetic RiskGenetic TranscriptionGoalsLinkLogistic RegressionsMachine LearningMedicineModelingMotorNatureNeurosciencesParkinson DiseasePatientsPopulationProcessPublic HealthRNASamplingSeveritiesTechniquesTestingTherapeuticTimeTranscriptUntranslated RNAVariantanalytical methodautoencoderbasebiomarker developmentbiomarker discoverycohortcomputer frameworkdeep learningdifferential expressiondisease diagnosisdopamine transporterfeature selectiongenetic variantgenome-widegenomic signatureinnovationlarge datasetslarge scale datalearning strategymachine learning algorithmmachine learning methodmultiple omicsneuroimagingnovelpredictive modelingrisk variantscreeningtranscriptome
项目摘要
AI2AMP-PD: Accelerating Parkinson’s Diagnosis using Multi-omics and Artificial Intelligence
PROJECT SUMMARY AND ABSTRACT
Parkinson’s disease (PD) affects more than 7 million people worldwide, and biomarkers to bolster the therapeutic
pipeline are urgently needed. Developing biomarkers for clinical use is a difficult process that requires evaluation
of multiple, large cohorts, each adding confidence to the marker. The Accelerating Medicine Partnership in
Parkinson’s disease (AMP PD) consortium provides an unparalleled opportunity to rapidly achieve this previously
elusive goal.
We hypothesize that a powerful, multi-omics classifier powered by standard and advanced machine
learning algorithms will accurately identify PD-associated biomarkers at genome scale. Transcripts and genomic
classifiers associated with PD will be identified in early-stage, untreated, patients with Dopamine Transporter-
neuroimaging-supported diagnosis represented in the PPMI cohort. Transcripts and genomic classifiers will be
rigorously replicated in the independent PDBP and BioFIND cohorts. Multi-omics classifiers using both PD-
associated transcriptome changes and PD-associated genomic variants will be built with state-of-the-art deep
learning techniques (e.g. variational autoencoder).
This analysis will powerfully delineate --- for the first time --- the full spectrum of known and novel, coding
and noncoding RNAs linked to PD and detectable in circulating blood cells in a harmonized, large-scale data set.
It will develop and test highly innovative multi-omics classifiers and provide a generally useful computational
framework for large-scale, unbiased PD biomarker discovery.
AI 2AMP-PD:使用多组学和人工智能加速帕金森病的诊断
项目总结和摘要
帕金森病(PD)影响着全球700多万人,生物标志物可支持治疗
管道是迫切需要的。开发用于临床的生物标志物是一个困难的过程,需要进行评估
多个大的队列,每个队列都增加了标记的信心。加速医学伙伴关系,
帕金森病(AMP PD)联盟提供了一个无与伦比的机会,迅速实现这一先前
难以捉摸的目标
我们假设,一个强大的,多组学分类器由标准和先进的机器供电,
学习算法将在基因组规模上准确地识别PD相关的生物标志物。转录本和基因组
将在早期、未经治疗的多巴胺转运蛋白患者中确定与PD相关的分类器,
神经影像学支持的诊断在PPMI队列中代表。转录本和基因组分类器将被
在独立的PDBP和BioFIND队列中严格复制。多组学分类器使用PD-
相关的转录组变化和PD相关的基因组变异将建立与国家的最先进的深
学习技术(例如变分自动编码器)。
这种分析将有力地描绘-第一次-已知的和新的编码的全部谱,
以及与PD相关的非编码RNA,并在协调的大规模数据集中在循环血细胞中检测到。
它将开发和测试高度创新的多组学分类器,并提供一个普遍有用的计算
大规模、无偏倚的PD生物标志物发现的框架。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
powerEQTL: an R package and shiny application for sample size and power calculation of bulk tissue and single-cell eQTL analysis.
- DOI:10.1093/bioinformatics/btab385
- 发表时间:2021-11-18
- 期刊:
- 影响因子:5.8
- 作者:Dong, Xianjun;Li, Xiaoqi;Chang, Tzuu-Wang;Scherzer, Clemens R.;Weiss, Scott T.;Qiu, Weiliang
- 通讯作者:Qiu, Weiliang
FLED: a full-length eccDNA detector for long-reads sequencing data.
FLED:用于长读长测序数据的全长 eccDNA 检测器。
- DOI:10.1093/bib/bbad388
- 发表时间:2023
- 期刊:
- 影响因子:9.5
- 作者:Li,Fuyu;Ming,Wenlong;Lu,Wenxiang;Wang,Ying;Li,Xiaohan;Dong,Xianjun;Bai,Yunfei
- 通讯作者:Bai,Yunfei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xianjun Dong其他文献
Xianjun Dong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xianjun Dong', 18)}}的其他基金
A Large-scale Extracellular Vesicle RNA-seq Resource for Parkinsons Disease
帕金森病的大规模细胞外囊泡 RNA-seq 资源
- 批准号:
10706937 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Regulation mechanism and functional genomics of LINE1 RNA in TDP-43 linked neurodegeneration
TDP-43相关神经变性中LINE1 RNA的调控机制和功能基因组学
- 批准号:
10518877 - 财政年份:2022
- 资助金额:
$ 53.7万 - 项目类别:
Regulation mechanism and functional genomics of LINE1 RNA in TDP-43 linked neurodegeneration
TDP-43相关神经变性中LINE1 RNA的调控机制和功能基因组学
- 批准号:
10697326 - 财政年份:2022
- 资助金额:
$ 53.7万 - 项目类别:
Systematic study of extracellular vesicles and their integrative analysis with Parkinson's organoids MAP
细胞外囊泡的系统研究及其与帕金森氏类器官 MAP 的综合分析
- 批准号:
10345089 - 财政年份:2022
- 资助金额:
$ 53.7万 - 项目类别:
Systematic Study of Extracellular Vesicles and their Integrative Analysis with Parkinson's Organoids MAP
细胞外囊泡的系统研究及其与帕金森氏类器官 MAP 的综合分析
- 批准号:
10605192 - 财政年份:2022
- 资助金额:
$ 53.7万 - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 53.7万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 53.7万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 53.7万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 53.7万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 53.7万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 53.7万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 53.7万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 53.7万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 53.7万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 53.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)