Emergent mechanics of mammalian chromosome segregation
哺乳动物染色体分离的新兴机制
基本信息
- 批准号:10159942
- 负责人:
- 金额:$ 65.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAnaphaseArchitectureAutomobile DrivingCell divisionCell modelCellsChromosome SegregationChromosomesCongenital AbnormalityDecision MakingEventGoalsIn VitroInheritedKinetochoresKnowledgeLeadMalignant NeoplasmsMammalian CellMammalian ChromosomesMechanicsMicrotubulesMitosisModelingMolecularRoleShapesSignal TransductionStressStructureTestingTherapeuticTimeWorkbasebiophysical techniquesdaughter celldesigngraspin vivoinnovationmolecular scaleoptogeneticsphysical processphysical propertyreconstitutiontool
项目摘要
Project Summary/Abstract
Two large macromolecular machines, the spindle and kinetochore, coordinate chromosome segregation at cell
division. Errors in their function can lead to cancer and birth defects. While we now know nearly all the
molecules required for mammalian spindle and kinetochore function, how they collectively give rise to these
machines’ emergent physical properties remains poorly understood. Our long-term goal is to uncover the basic
physical design principles of robust and accurate mammalian chromosome segregation. How do thousands of
nm-scale molecules, pushing and pulling, give rise to the spindle’s m-scale steady-state architecture and
mechanics? How do hundreds of kinetochore molecules work together to ‘compute’ attachment signals for
decision-making, and to robustly grip microtubules? This knowledge gap persists because we cannot currently
reconstitute these machines in vitro, and lack tools in vivo. To close this gap, we need approaches to finely
control molecules and directly exert forces inside dividing mammalian cells – which we recently developed.
First, we aim to define the mechanisms and functions of the spindle’s emergent architecture and
mechanics. (i) Based on our findings, we will test the idea that opposing stresses in the spindle are not
required to give it a steady-state structure, but are instead required to give it mechanical and functional
stability. Further, we will define in vivo and in vitro how active and passive forces contribute to building a
steady-state spindle. (ii) To uncover the function of the spindle’s specific steady-state shape, we developed an
optogenetic approach to acutely and locally control spindle architecture. We will use it to test the role of given
architectural modules in space and time through mitosis. (iii) To define the mechanisms underlying the steady-
state spindle’s mechanical robustness, we will use microneedle manipulation to deform the spindle, which we
recently adapted in mammalian cells, and modeling. Second, we aim to define how the kinetochore’s
molecules together enable it to ‘compute' attachment information and robustly grip microtubules. (i) Based on
our recent finding that only a few bound microtubules are needed for a kinetochore to allow anaphase, we will
quantitatively rewire kinetochore composition to test models for the origin of this exquisite microtubule
sensitivity. (ii) Using biophysical approaches we developed to remove and exert forces on kinetochores in vivo,
we will define the mechanisms giving rise to the kinetochore’s specialized, strong and dynamic grip.
Together, this will provide a framework for understanding, targeting, and rewiring the physical
processes of chromosome segregation for both basic and therapeutic purposes. This proposal is innovative in
that it tests new hypotheses about the connection between molecular and cellular-scale events, and provides
new tools for rewiring molecular-scale forces and assemblies and directly probing mechanics inside dividing
mammalian cells. More broadly, this work will serve as a platform for understanding the emergent architecture,
mechanics and computation of diverse macromolecular machines.
项目总结/摘要
两个大的大分子机器,纺锤体和动粒,协调染色体分离在细胞
师.它们功能的错误可能导致癌症和出生缺陷。虽然我们现在知道几乎所有的
哺乳动物纺锤体和动粒功能所需的分子,它们是如何共同产生这些
机器的自然物理特性仍然知之甚少。我们的长期目标是揭示
物理设计原理的鲁棒性和准确的哺乳动物染色体分离。成千上万的
纳米尺度的分子,推和拉,产生了纺锤体的纳米尺度的稳态结构,
机械师?数百个动粒分子如何协同工作来“计算”附着信号,
决策,并有力地抓住微管?这种知识差距之所以持续存在,是因为我们目前无法
在体外重建这些机器,在体内缺乏工具。为了缩小这一差距,我们需要采取一些方法,
控制分子,并直接在哺乳动物细胞分裂中施加力量-这是我们最近开发的。
首先,我们的目标是定义主轴的涌现架构的机制和功能,
力学(i)根据我们的发现,我们将测试的想法,在主轴相反的应力是不是
需要给它一个稳定状态的结构,而是需要给它机械和功能
稳定此外,我们将定义在体内和体外如何主动和被动的力量有助于建立一个
稳态主轴(ii)为了揭示纺锤体特定稳态形状的功能,我们开发了一个
光遗传学方法来急性和局部控制纺锤体结构。我们将用它来测试给定的
通过有丝分裂在空间和时间上构建模块。(iii)为了确定稳定的潜在机制-
状态主轴的机械鲁棒性,我们将使用微针操纵主轴变形,我们
最近在哺乳动物细胞中进行了调整,并进行了建模。其次,我们的目标是定义动粒是如何
分子一起使它能够“计算”附着信息并牢固地抓住微管。(i)基于
我们最近的发现,动粒只需要几个结合的微管就可以允许后期,我们将
定量地重新连接动粒组成,以测试这种精致微管起源的模型
灵敏度(ii)利用我们开发的生物物理方法来去除并施加在体内动粒上的力,
我们将定义产生动粒的专门的、强有力的和动态的抓握的机制。
总之,这将提供一个框架,用于理解,定位和重新连接物理
用于基本和治疗目的的染色体分离过程。这一建议具有创新性,
它测试了关于分子和细胞尺度事件之间联系的新假设,并提供了
新的工具,重新布线分子规模的力量和组件,并直接探测力学内部划分
哺乳动物细胞更广泛地说,这项工作将作为理解紧急架构的平台,
各种高分子机器的力学和计算。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sophie Dumont其他文献
Sophie Dumont的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sophie Dumont', 18)}}的其他基金
Emergent mechanics of mammalian chromosome segregation
哺乳动物染色体分离的新兴机制
- 批准号:
10431841 - 财政年份:2020
- 资助金额:
$ 65.11万 - 项目类别:
Emergent mechanics of mammalian chromosome segregation
哺乳动物染色体分离的新兴机制
- 批准号:
10619627 - 财政年份:2020
- 资助金额:
$ 65.11万 - 项目类别:
Mechanics of the dynamic mammalian kinetochore-microtubule interface
动态哺乳动物动粒-微管界面的力学
- 批准号:
9803332 - 财政年份:2019
- 资助金额:
$ 65.11万 - 项目类别:
Force generation and detection in the spindle: the case of the kinetochore
主轴中力的产生和检测:着丝粒的情况
- 批准号:
8131603 - 财政年份:2010
- 资助金额:
$ 65.11万 - 项目类别:
Force generation and detection in the spindle: the case of the kinetochore
主轴中力的产生和检测:着丝粒的情况
- 批准号:
7962323 - 财政年份:2010
- 资助金额:
$ 65.11万 - 项目类别:
相似国自然基金
RIF1蛋白在处理超细后期桥(ultrafine anaphase bridge)和保障基因组稳定的作用
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
The Anaphase Promoting Complex/Cyclosome and double-stranded DNA damage in S. cerevisiae
酿酒酵母中的后期促进复合物/环体和双链 DNA 损伤
- 批准号:
574890-2022 - 财政年份:2022
- 资助金额:
$ 65.11万 - 项目类别:
University Undergraduate Student Research Awards
Identification of protein phosphatases required for anaphase onset.
鉴定后期开始所需的蛋白磷酸酶。
- 批准号:
575128-2022 - 财政年份:2022
- 资助金额:
$ 65.11万 - 项目类别:
University Undergraduate Student Research Awards
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
- 批准号:
10797668 - 财政年份:2022
- 资助金额:
$ 65.11万 - 项目类别:
Characterization of molecular mechanisms governing budding yeast lifespan using small peptides that interact with the Anaphase Promoting Complex
使用与后期促进复合物相互作用的小肽来表征控制芽殖酵母寿命的分子机制
- 批准号:
RGPIN-2017-05478 - 财政年份:2022
- 资助金额:
$ 65.11万 - 项目类别:
Discovery Grants Program - Individual
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
- 批准号:
10345098 - 财政年份:2022
- 资助金额:
$ 65.11万 - 项目类别:
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
- 批准号:
10561625 - 财政年份:2022
- 资助金额:
$ 65.11万 - 项目类别:
Characterization of molecular mechanisms governing budding yeast lifespan using small peptides that interact with the Anaphase Promoting Complex
使用与后期促进复合物相互作用的小肽来表征控制芽殖酵母寿命的分子机制
- 批准号:
RGPIN-2017-05478 - 财政年份:2021
- 资助金额:
$ 65.11万 - 项目类别:
Discovery Grants Program - Individual
Characterization of mitochondrial organization, epigenomic regulation, and the Anaphase Promoting Complex in Progeria-driven premature senescence
早衰症驱动的过早衰老中线粒体组织、表观基因组调控和后期促进复合物的表征
- 批准号:
466918 - 财政年份:2021
- 资助金额:
$ 65.11万 - 项目类别:
Studentship Programs
The Role of the Anaphase Promoting Complex in Breast Cancer Progression
后期促进复合物在乳腺癌进展中的作用
- 批准号:
555539-2020 - 财政年份:2020
- 资助金额:
$ 65.11万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Unravelling the role of topoisomerase II beta binding protein 1 (TOPBP1) in the resolution of ultra-fine anaphase bridges.
揭示拓扑异构酶 II β 结合蛋白 1 (TOPBP1) 在解析超细后期桥中的作用。
- 批准号:
BB/T009608/1 - 财政年份:2020
- 资助金额:
$ 65.11万 - 项目类别:
Fellowship