Chemically Tuned Silicon Nitride Nanopores for Nucleic Acid Sequencing
用于核酸测序的化学调谐氮化硅纳米孔
基本信息
- 批准号:10162635
- 负责人:
- 金额:$ 25.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-11 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAlkenesAlkynesAutomobile DrivingBiological AssayBiopolymersCaliberCationsCharacteristicsChargeChemicalsChemistryComplexDNADNA SequenceDNA sequencingDevicesDiagnosisDimensionsDiseaseElectrophoresisElectrostaticsElementsEnvironmentFilmFoundationsFundingGeneticGenotypeInterfacial PhenomenaLabelLengthMeasurementMedicalMembraneMethodsModificationMolecularMotionNatureNoiseNucleic AcidsNucleic acid sequencingOligonucleotidesOrganic ChemicalsOrganic ChemistryOxidesPerformancePlant RootsPolymersProceduresPropertyProteinsRNAReagentResearch PersonnelResolutionRestRoleSamplingScienceSignal TransductionSilanesSiliconSpeedStructure of molecular layer of cerebellar cortexSurfaceTechnologyTestingThickThinnessTimeTractionWorkbasechemical propertychemical synthesiscostdesigndriving forceexperienceexperimental studyfunctional groupimprovedinsightmaterials sciencemolecular filmmolecular scalemonolayernanofabricationnanoporesequencing platformsilicon nitridesolid statesurface coatingtooltranscriptome sequencing
项目摘要
PROJECT SUMMARY
This project aims to improve DNA and RNA sequencing technology by at least an order of
magnitude by dramatically improving the ability to control silicon nitride nanopore surface
chemistry and to modify silicon nitride nanopore size. While silicon nitride is a conventional
material for nanopore sequencing applications, its complex charged native surface chemistry
can present a challenging and complicated environment for a charged nucleic acid biopolymer
passing through a nanopore not much larger than itself. Highly desirable long read lengths
heighten the need for chemical control over the nanopore surface. Coating the nanopore
surface with even a single molecular layer will change the nanopore diameter, which thus also
provides for molecular-scale tuning of nanopore dimensions. Broadly, chemically tuned
nanopore surface chemistry affords control over motion of (native or labelled) nucleic acid
polymers through the pore through electrostatics, specific chemical interactions, and
electrokinetics (e.g. electroosmosis). It offers the potential for passivation against fouling in
complex matrices, thereby supporting more minimal sample processing. It also affords control
over interfacial phenomena that can affect nanopore current noise.
Thin-film silicon nitride is a widely used nanofabrication material with widespread commercial
utility, so that its continued use in a host of nanopore sequencing implementations is warranted
in spite of its often challenging surface chemistry. But efforts to control and improve its surface
chemistry using silane chemistry have not gained traction in the field, in significant part because
the chemistry is inherently challenging to implement, the more so given the variability of the
silicon nitride oxide coating. We thus propose to develop a radically different type of surface
chemical modification strategy that is simple to implement, produces highly reliable results, and
that can be used to install surface coatings with a wide variety of chemical properties and sizes.
We propose to test the surface coatings through their effect on the nanopore conductance and
current noise, and on the sequence-specific signal characteristics when sensing well-defined
sequences of DNA.
The project will be implemented by an interdisciplinary team that combines more than 20 years
of Principal and Co-Investigator experience in physical organic chemistry and chemical
synthesis (MK); materials science (MK&JRD); and nanofabrication (JRD), with a decade of
experience in nanopore science begun in nanopore genotyping (JRD), including a specialization
in nanopore surface chemistry modification and characterization.
项目总结
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Rodger Dwyer其他文献
Jason Rodger Dwyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Development of Enantioselective Carboalumination of Alkenes and Alkynes Catalyzed by Rare-Erath Metal Catalysts
稀土金属催化剂催化烯烃和炔烃对映选择性碳铝化反应的研究进展
- 批准号:
21F21334 - 财政年份:2021
- 资助金额:
$ 25.19万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Highly Selective Catalytic Reactions of Alkenes and Alkynes Relevant to Medicinal and Process Chemistry
与医药和工艺化学相关的烯烃和炔烃的高选择性催化反应
- 批准号:
10544730 - 财政年份:2021
- 资助金额:
$ 25.19万 - 项目类别:
Highly Selective Catalytic Reactions of Alkenes and Alkynes Relevant to Medicinal and Process Chemistry
与医药和工艺化学相关的烯烃和炔烃的高选择性催化反应
- 批准号:
10320911 - 财政年份:2021
- 资助金额:
$ 25.19万 - 项目类别:
Highly Selective Catalytic Reactions of Alkenes and Alkynes Relevant to Medicinal and Process Chemistry
与医药和工艺化学相关的烯烃和炔烃的高选择性催化反应
- 批准号:
10581995 - 财政年份:2021
- 资助金额:
$ 25.19万 - 项目类别:
A New Class of Selenium Catalysts for the Amination of Alkenes and Alkynes
用于烯烃和炔烃胺化的新型硒催化剂
- 批准号:
1764450 - 财政年份:2018
- 资助金额:
$ 25.19万 - 项目类别:
Continuing Grant
Combinatorial, Catalytic Functionalization of Alkenes and Alkynes
烯烃和炔烃的组合催化官能化
- 批准号:
9980424 - 财政年份:2017
- 资助金额:
$ 25.19万 - 项目类别:
Combinatorial, Catalytic Functionalization of Alkenes and Alkynes
烯烃和炔烃的组合催化官能化
- 批准号:
10389360 - 财政年份:2017
- 资助金额:
$ 25.19万 - 项目类别:
Combinatorial, Catalytic Functionalization of Alkenes and Alkynes
烯烃和炔烃的组合催化官能化
- 批准号:
10217186 - 财政年份:2017
- 资助金额:
$ 25.19万 - 项目类别:
Combinatorial, Catalytic Functionalization of Alkenes and Alkynes
烯烃和炔烃的组合催化官能化
- 批准号:
9382932 - 财政年份:2017
- 资助金额:
$ 25.19万 - 项目类别:
Combinatorial, Catalytic Functionalization of Alkenes and Alkynes
烯烃和炔烃的组合催化官能化
- 批准号:
10393990 - 财政年份:2017
- 资助金额:
$ 25.19万 - 项目类别:














{{item.name}}会员




