A novel computing framework to automatically process cardiac valve image data and predict treatment outcomes
一种新颖的计算框架,可自动处理心脏瓣膜图像数据并预测治疗结果
基本信息
- 批准号:10162650
- 负责人:
- 金额:$ 38.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdverse eventAlgorithmsAnatomyAreaArtificial IntelligenceAttentionBiomechanicsBiomedical ComputingClinicalClinical EngineeringComplexComputer AnalysisComputer ModelsComputer SimulationConsumptionCoronary OcclusionsDataData AnalysesData SetDevelopmentDevice DesignsDevice or Instrument DevelopmentDevicesDictionaryDiseaseElementsEvaluationExtravasationFeedbackFinite Element AnalysisGenerationsGeometryGoalsGuidelinesHeart ValvesHospitalsHourHumanImageInterventionLaboratoriesLanguageLearningLeft ventricular structureMachine LearningManualsMethodsMitral ValveModelingOutcomeOutputPatient-Focused OutcomesPatientsPerformancePlant RootsPostoperative PeriodProblem SetsProceduresProcessPropertyResearch PersonnelResponse ElementsRunningRuptureSamplingShapesStatistical Data InterpretationStentsStructureTechniquesTestingThinnessTimeTissue ModelTrainingTranslationsTreatment outcomeUncertaintyVariantX-Ray Computed Tomographyalgorithm trainingaortic valveaortic valve replacementascending aortabasecalcificationclinical applicationclinical imagingclinical practiceclinically translatabledeep learningdeep neural networkheart functionheart imagingimaging modalityimprovedinnovationmachine learning algorithmmodels and simulationnovelpatient populationpersonalized approachpopulation basedpreventreconstructionresearch clinical testingsimulationspeech recognitiontime resolved datatwo-dimensionalvirtual clinical trialvirtual patient
项目摘要
PROJECT SUMMARY
There is a massive amount of clinical three-dimensional (3D) cardiac image data available today in
numerous hospitals, but such data has been considerably underutilized in both clinical and engineering analyses
of cardiac function. These 3D data offers unique and valuable information, allowing researchers to develop
innovative, personalized approaches to treat diseases. Furthermore, using these 3D datasets as input to
computational models can facilitate a population-based analysis that can be used to quantify uncertainty in
treatment procedures, and can be utilized for virtual clinical trials for innovative device development. However,
there are several critical technical bottlenecks preventing simulation-based clinical evaluation a reality: 1)
difficulty in automatic 3D reconstruction of thin complex structures such as heart valve leaflets from clinical
images, 2) computational models are constructed without mesh correspondence, which makes it challenging to
run batch simulations and conduct large patient population data analyses due to inconsistencies in model setups,
and 3) computing time is long, which inhibits prompt feedback for clinical use.
A potential paradigm-changing solution to the challenges is to incorporate machine learning algorithms
to expedite the geometry reconstruction and computational analysis procedures. Therefore, the objective of this
proposal is to develop a novel computing framework, using advanced tissue modeling and machine learning
techniques, to automatically process pre-operative clinical image data and predict post-operative clinical
outcomes. Transcatheter aortic valve replacement (TAVR) intervention will serve as a testbed for the modeling
methods. In Aim 1, we will develop novel shape dictionary learning (SDL) based methods for automatic
reconstruction of TAVR patient aortic valves. Through the modeling process, mesh correspondence will be
established across the patient geometric models. The distribution and variation of TAVR patient geometries will
be described by statistical shape models (SSMs). In Aim 2, population-based FE analysis of the TAVR procedure
will be conducted on thousands of virtual patient models generated by the SSMs (Aim 1). A deep neural network
(DNN) will be developed and trained to learn the relationship between the TAVR FE inputs and outputs.
Successful completion of this study will result in a ML-FE surrogate for TAVR analysis, combining the automated
TAVR patient geometry reconstruction algorithms and the trained DNN, to provide fast TAVR biomechanics
analysis without extensive re-computing of the model. Furthermore, the algorithms developed in this study can
be generalized for other applications and devices.
项目概要
目前有大量临床三维 (3D) 心脏图像数据可供使用
许多医院,但这些数据在临床和工程分析中都没有得到充分利用
心脏功能。这些 3D 数据提供了独特且有价值的信息,使研究人员能够开发
创新、个性化的疾病治疗方法。此外,使用这些 3D 数据集作为输入
计算模型可以促进基于人群的分析,可用于量化不确定性
治疗程序,并可用于创新设备开发的虚拟临床试验。然而,
有几个关键的技术瓶颈阻碍了基于模拟的临床评估成为现实:1)
临床上难以自动 3D 重建薄的复杂结构,例如心脏瓣膜小叶
图像,2)计算模型是在没有网格对应的情况下构建的,这使得它具有挑战性
由于模型设置不一致,运行批量模拟并进行大量患者群体数据分析,
3)计算时间长,不利于临床使用的及时反馈。
应对挑战的潜在范式改变解决方案是结合机器学习算法
加快几何重建和计算分析程序。因此,本次活动的目的
提案是利用先进的组织建模和机器学习开发一种新颖的计算框架
技术,自动处理术前临床图像数据并预测术后临床
结果。经导管主动脉瓣置换术(TAVR)干预将作为模型的测试平台
方法。在目标 1 中,我们将开发基于形状字典学习 (SDL) 的新颖方法,用于自动
TAVR 患者主动脉瓣重建。通过建模过程,网格对应关系将是
建立跨患者的几何模型。 TAVR 患者几何形状的分布和变化将
通过统计形状模型(SSM)来描述。在目标 2 中,基于人群的 TAVR 手术有限元分析
将在 SSM 生成的数千个虚拟患者模型上进行(目标 1)。深度神经网络
(DNN)将被开发和训练以了解 TAVR FE 输入和输出之间的关系。
这项研究的成功完成将产生用于 TAVR 分析的 ML-FE 替代品,结合自动化
TAVR 患者几何重建算法和经过训练的 DNN,提供快速的 TAVR 生物力学
无需对模型进行大量重新计算即可进行分析。此外,本研究开发的算法可以
可以推广到其他应用程序和设备。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation of in vivo constitutive parameters of the aortic wall using a machine learning approach.
- DOI:10.1016/j.cma.2018.12.030
- 发表时间:2019-04
- 期刊:
- 影响因子:7.2
- 作者:Minliang Liu;L. Liang;Wei Sun
- 通讯作者:Minliang Liu;L. Liang;Wei Sun
On the computation of in vivo transmural mean stress of patient-specific aortic wall.
- DOI:10.1007/s10237-018-1089-5
- 发表时间:2019-04
- 期刊:
- 影响因子:3.5
- 作者:Liu M;Liang L;Liu H;Zhang M;Martin C;Sun W
- 通讯作者:Sun W
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RUDOLPH L GLEASON其他文献
RUDOLPH L GLEASON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RUDOLPH L GLEASON', 18)}}的其他基金
PREVENTING MATERNAL MORTALITY FROM OBSTRUCTED LABOR
预防难产造成的孕产妇死亡
- 批准号:
10619512 - 财政年份:2021
- 资助金额:
$ 38.44万 - 项目类别:
PREVENTING MATERNAL MORTALITY FROM OBSTRUCTED LABOR
预防难产造成的孕产妇死亡
- 批准号:
10390445 - 财政年份:2021
- 资助金额:
$ 38.44万 - 项目类别:
FIBULIN-5 & WALL STRESSES IN VASCULAR REMODELING: THEORY AND EX VIVO EXPERIMENTS
FIBULIN-5
- 批准号:
7499745 - 财政年份:2007
- 资助金额:
$ 38.44万 - 项目类别:
MECHANICALLY-INDUCED REMODELING OF TISSUE ENGINEERED BLOOD VESSELS
组织工程血管的机械诱导重塑
- 批准号:
7500827 - 财政年份:2007
- 资助金额:
$ 38.44万 - 项目类别:
FIBULIN-5 & WALL STRESSES IN VASCULAR REMODELING: THEORY AND EX VIVO EXPERIMENTS
FIBULIN-5
- 批准号:
7254459 - 财政年份:2007
- 资助金额:
$ 38.44万 - 项目类别:
MECHANICALLY-INDUCED REMODELING OF TISSUE ENGINEERED BLOOD VESSELS
组织工程血管的机械诱导重塑
- 批准号:
7236882 - 财政年份:2007
- 资助金额:
$ 38.44万 - 项目类别:
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 38.44万 - 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
- 批准号:
479728 - 财政年份:2023
- 资助金额:
$ 38.44万 - 项目类别:
Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
- 批准号:
10884567 - 财政年份:2023
- 资助金额:
$ 38.44万 - 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
- 批准号:
10751964 - 财政年份:2023
- 资助金额:
$ 38.44万 - 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
- 批准号:
486321 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别:
Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10676786 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10440970 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
- 批准号:
10642998 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 38.44万 - 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
- 批准号:
10191053 - 财政年份:2020
- 资助金额:
$ 38.44万 - 项目类别:














{{item.name}}会员




