Computed Tomographic Insights Into Pulmonary Hypertension

计算机断层扫描对肺动脉高压的见解

基本信息

  • 批准号:
    10162641
  • 负责人:
  • 金额:
    $ 19.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

Project Summary Pulmonary hypertension is a disease that occurs most frequently as complicating comorbidity of very common disease in the western world including COPD, Heart Failure and Blood Clots in the lung. Its presence alone or in combination with other conditions leads to significant morbidity and mortality. Medications developed successfully for Group I disease have not shown as much utility in Group II (Due to left heart disease) and Group III (due to lung disease) PH. It has been proposed that this may be due to an inability to identify subtypes of PH that respond to this type of treatment. Additionally, non-invasive screening and early detection remain challenging. Radiologists have been making observations of the loss of distal vasculature (pruning), increase vascular “tortuosity”, and proximal dilation of the pulmonary vasculature. Algorithms developed and implemented by Dr. Rahaghi and the Applied Chest Imaging Laboratory (ACIL) group permit the 3D reconstruction and quantification of the structure of pulmonary vasculature using CT scans. Dr. Rahaghi has already deployed these algorithms in multiple cohorts generating publications and preliminary data. In his first aim, Dr. Rahaghi will explore the differences in the structure of the pulmonary vasculature between different groups of pulmonary hypertension and subjects without pulmonary hypertension and relate these findings to disease severity. In the second aim, he will study the extent to which pulmonary vascular structure can predict right ventricular dysfunction, a key event in the progression of disease that is predictive of poor outcome and signals the need for more aggressive treatment. In the third aim, he will study pulmonary vascular structure and its relationship to pulmonary vascular mechanics during exercise. This work will be performed at the Division of Pulmonary and Critical Care Medicine at Brigham and Women's Hospital, a core teaching hospital of Harvard Medical School, under the supervision of two mentors, Dr. Washko who is an expert in clinical lung imaging and Dr. Waxman who is an expert in clinical pulmonary hypertension. The site is one of six in the nation chosen as part of the PVDOMICS project which is NIH funded effort to subtype pulmonary hypertension. Dr. Rahaghi's team includes members of the Applied Chest Imaging Laboratory which includes a team of mathematicians and computer scientists who have a decade long collaboration in creating computer algorithms for image-processing of the lung. Dr. Rahaghi has a life-long dedication to becoming a physician-scientist with a focus on quantitative sciences and their applications to medicine. He has a background in physics and a Ph.D. in Bioengineering as part of a NIH sponsored medical-scientist training program. He plans to use the knowledge he gains by interacting with patients who have pulmonary hypertension and his knowledge of engineering and study design to improve care and outcomes in PH.
项目摘要 肺动脉高压是一种最常见的并发症, 在西方世界,慢性阻塞性肺病、心力衰竭和肺部血块是常见的慢性病。它的存在本身或 与其他病症结合导致显著的发病率和死亡率。开发的药物 成功治疗I组疾病在II组(由于左心脏病)中没有显示出同样多的效用, III组(由于肺部疾病)PH。有人提出,这可能是由于无法识别 对这种治疗有反应的PH亚型。此外,非侵入性筛查和早期检测 保持挑战性。放射科医生一直在观察远端脉管系统的损失(修剪), 增加血管“迂曲度”和肺血管的近端扩张。开发的算法和 由Rahaghi博士和应用胸部成像实验室(ACIL)小组实施的3D 使用CT扫描重建和量化肺血管结构。Rahaghi博士 已经在多个群组中部署了这些算法,生成了出版物和初步数据。 在他的第一个目标中,Rahaghi博士将探索肺血管结构的差异 不同肺动脉高压组与非肺动脉高压组之间的差异及相关性 这些发现与疾病的严重程度有关。在第二个目标中,他将研究肺血管 结构可以预测右心室功能障碍,这是疾病进展中的一个关键事件, 结果不佳,表明需要更积极的治疗。在第三个目标中,他将研究肺 运动时肺血管结构及其与肺血管力学的关系。 这项工作将在布里格姆的肺部和重症监护医学部进行, 女子医院是哈佛医学院的核心教学医院,在两位导师的监督下, 博士Washko博士是临床肺部成像专家,Waxman博士是临床肺部成像专家。 高血压该网站是美国国家卫生研究院资助的PVDOMICS项目的六个网站之一 努力分型肺动脉高压。Rahaghi博士的团队包括应用胸部成像的成员 该实验室包括一个由数学家和计算机科学家组成的团队, 合作创建用于肺部图像处理的计算机算法。 Rahaghi博士毕生致力于成为一名专注于定量研究的物理科学家。 科学及其在医学上的应用。他有物理学背景和博士学位。生物工程作为 是NIH资助的医学科学家培训项目的一部分。他计划利用他所获得的知识, 与患有肺动脉高压的患者以及他的工程和研究设计知识进行互动 以改善PH的护理和结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FARBOD Nicholas RAHAGHI其他文献

FARBOD Nicholas RAHAGHI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FARBOD Nicholas RAHAGHI', 18)}}的其他基金

Classification and Prognostication in Pulmonary Thromboembolism Using Computed Tomography Image Analytics
使用计算机断层扫描图像分析对肺血栓栓塞进行分类和预测
  • 批准号:
    10502716
  • 财政年份:
    2022
  • 资助金额:
    $ 19.98万
  • 项目类别:
Computed Tomographic Insights Into Pulmonary Hypertension
计算机断层扫描对肺动脉高压的见解
  • 批准号:
    10439060
  • 财政年份:
    2017
  • 资助金额:
    $ 19.98万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了