Mechanisms of lipid-induced bioenergetic stress in muscle
脂质诱导肌肉生物能应激的机制
基本信息
- 批准号:10162581
- 负责人:
- 金额:$ 59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisAcuteAcyl Coenzyme AAgeAgingAreaBioenergeticsBiological AssayBiological MarkersBloodBlood GlucoseButyratesCarbonCardiacCardiometabolic DiseaseCatabolic ProcessCatabolismClinicalComplexConsumptionDiabetes MellitusDiagnosticDiseaseElectron TransportElectronsEnergy MetabolismEnergy TransferEnzymesEventExercise ToleranceExercise stress testFastingFatty AcidsFree EnergyFunctional disorderGrantHealthHeartHeart MitochondriaHeart failureHereditary DiseaseHomeostasisHumanImpairmentIn VitroInstitutesIntermittent fastingKetonesKineticsLaboratoriesLinkLipidsMass Spectrum AnalysisMediator of activation proteinMembrane PotentialsMetabolicMetabolic DiseasesMetabolic stressMetabolismMethodsMitochondriaMitochondrial DiseasesMitochondrial ProteinsModelingMole the mammalMolecularMolecular ProfilingMusMuscleMuscle MitochondriaMyocardial dysfunctionNatural regenerationNon-Insulin-Dependent Diabetes MellitusNormal CellNutrientObesityOrganOrgan failureOutcomeOxidation-ReductionOxidoreductasePathway interactionsPhosphorylationPhysiologicalPhysiologyPlayPopulationPost-Translational Protein ProcessingPotential EnergyPrediabetes syndromeProcessProteomicsRegimenReportingResearch PersonnelResistanceRoleRouteSignal TransductionSkeletal MuscleStressStress TestsTechnologyTestingThermodynamicsTissuesWorkacylcarnitineage relatedbasecancer cachexiacardiometabolismdiagnostic assaydiagnostic platformexercise intolerancefatty acid oxidationinsightlong chain fatty acidmetabolomicsmitochondrial dysfunctionmultiple omicsmultiplex assaynovel therapeutic interventionnutrition related geneticsoxidationphosphoproteomicsrespiratoryresponsestemtool
项目摘要
Abstract
Our work in the area of mitochondrial function, energy homeostasis and metabolomics has led us
to discover a remarkably strong association between adverse cardiometabolic outcomes and
tissue/blood levels of acylcarnitine (AC) conjugates. These metabolites derive from acyl-CoA
intermediates of fuel catabolism and permit mitochondrial export of excess carbons. For the past
decade, our laboratory has remained keenly committed to answering a crucial question: What is
this AC signature telling us about the interplay between mitochondria and metabolic
disease? The current proposal aims to test the hypothesis that AC accumulation reflects a
bottleneck in the fatty acid oxidation (FAO) pathway that diminishes mitochondrial power and
efficiency. This prediction stems from unique insights gained via the application of a new
mitochondrial diagnostics platform developed by our laboratory during the previous grant cycle.
In simple terms, our assays serve as an in vitro “stress test” that evaluates how well a given
population of mitochondria, fueled by specific mixtures of carbon substrates, responds to a graded
energetic challenge. We have been combining this platform with mass spectrometry-based
metabolomics, proteomics and 13C metabolic flux analysis to evaluate mitochondrial remodeling
and corresponding changes in respiratory power and efficiency in response to a variety of
nutritional and genetic maneuvers. New and exciting findings suggest that AC accumulation
reflects a critical thermodynamic vulnerability in the mitochondrial FAO pathway, and thereby serves
as a signal of bioenergetic stress, en route to compromised bioenergetics and impending
tissue/organ failure. Moreover, our preliminary studies suggest mitochondria resident in untrained
skeletal muscles and failing hearts are especially vulnerable to this lipid-induced “traffic jam”; and
that ketones are uniquely able to circumvent the roadblock to defend cellular energetics in settings
of metabolic stress. Accordingly, we also aim to test the hypothesis that ketone oxidation plays
an essential role in permitting the salutary mitochondrial and metabolic adaptations known to
occur in response to regimens of intermittent fasting.
摘要
我们在线粒体功能、能量动态平衡和代谢组学领域的工作使我们
发现心脏代谢不良结果与
组织/血液中酰基肉碱(AC)结合物的水平。这些代谢物来源于酰基辅酶A
燃料分解代谢的中间产物,并允许线粒体输出多余的碳。为了过去
十年来,我们的实验室一直致力于回答一个关键问题:什么是
这个AC信号告诉我们线粒体和代谢之间的相互作用
疾病?目前的提议旨在检验交流积聚反映出
脂肪酸氧化(FAO)途径中的瓶颈,它降低了线粒体的能力和
效率。这一预测源于通过应用一种新的
线粒体诊断平台是我们实验室在前一个资助周期中开发的。
简单地说,我们的分析就像是一种体外“压力测试”,用来评估一个给定的
线粒体的数量,由特定的碳底物混合物提供燃料,对分级的
充满活力的挑战。我们一直在将这个平台与基于质谱学的
代谢组学、蛋白质组学和~(13)C代谢流分析评价线粒体重构
以及呼吸功率和效率的相应变化,以响应各种
营养和遗传操作。新的令人兴奋的发现表明,交流积聚
反映了线粒体粮农组织途径中的一个关键热力学脆弱性,从而为
作为生物能量压力的信号,在向生物能量学妥协的道路上,并即将到来
组织/器官衰竭。此外,我们的初步研究表明,线粒体驻留在未经训练的
骨骼肌和衰竭的心脏特别容易受到这种由脂质引起的“交通堵塞”的影响;
酮是唯一能够绕过障碍,在环境中保护细胞能量学的
新陈代谢压力。因此,我们也致力于验证酮氧化起作用的假设。
在允许有益的线粒体和已知的代谢适应中的重要作用
发生于对间歇性禁食的反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DEBORAH M MUOIO其他文献
DEBORAH M MUOIO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DEBORAH M MUOIO', 18)}}的其他基金
FASEB SRC: The Molecular Metabolism Conference: From Cell Biology to Systems Physiology
FASEB SRC:分子代谢会议:从细胞生物学到系统生理学
- 批准号:
10533636 - 财政年份:2022
- 资助金额:
$ 59万 - 项目类别:
Carnitine Acetyltransferase in Defending Mitochondrial and Metabolic Function
肉碱乙酰转移酶保护线粒体和代谢功能
- 批准号:
8538370 - 财政年份:2010
- 资助金额:
$ 59万 - 项目类别:
Role of Carnitine Acetyltransferase in Mitochondrial and Metabolic Function
肉碱乙酰转移酶在线粒体和代谢功能中的作用
- 批准号:
9039045 - 财政年份:2010
- 资助金额:
$ 59万 - 项目类别:
Role of Carnitine Acetyltransferase in Defending Mitochondrial and Metabolic Func
肉碱乙酰转移酶在保护线粒体和代谢功能中的作用
- 批准号:
7977269 - 财政年份:2010
- 资助金额:
$ 59万 - 项目类别:
Mechanisms of lipid-induced bioenergetic stress in muscle
脂质诱导肌肉生物能应激的机制
- 批准号:
10409823 - 财政年份:2010
- 资助金额:
$ 59万 - 项目类别:
Carnitine Acetyltransferase in Defending Mitochondrial and Metabolic Function
肉碱乙酰转移酶保护线粒体和代谢功能
- 批准号:
8309298 - 财政年份:2010
- 资助金额:
$ 59万 - 项目类别:
Carnitine Acetyltransferase in Defending Mitochondrial and Metabolic Function
肉碱乙酰转移酶保护线粒体和代谢功能
- 批准号:
8102959 - 财政年份:2010
- 资助金额:
$ 59万 - 项目类别:
Role of Carnitine Acetyltransferase in Mitochondrial and Metabolic Function
肉碱乙酰转移酶在线粒体和代谢功能中的作用
- 批准号:
9249032 - 财政年份:2010
- 资助金额:
$ 59万 - 项目类别:
Mechanisms linking the adipogenic phenotype of aging muscle to insulin resistance
衰老肌肉的脂肪形成表型与胰岛素抵抗之间的联系机制
- 批准号:
7907198 - 财政年份:2006
- 资助金额:
$ 59万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 59万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 59万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 59万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 59万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 59万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 59万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 59万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 59万 - 项目类别:
Standard Grant














{{item.name}}会员




