Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome

机械建模与机器学习相结合诊断急性呼吸窘迫综合征

基本信息

  • 批准号:
    EP/Y003527/1
  • 负责人:
  • 金额:
    $ 17.54万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

This project will combine large-scale electronic patient data, artificial intelligence algorithms, and mechanistic mathematical models, to develop systems that can improve the diagnosis, and hence treatment, of critically ill patients with acute respiratory distress syndrome (ARDS).The key idea is to use mechanistic virtual patient models as "filters" to extract relevant medical information on individual patients, significantly reducing biases introduced by machine learning on heterogeneous datasets, and allowing improved discovery of patient cohorts driven exclusively by medical conditions.I propose to establish a collaboration with Prof Andreas Schuppert at Aachen University and Dr Jörg Lippert at Bayer Healthcare in Germany that will give me access to large-scale patient data and internationally leading expertise in applying machine learning to real clinical problems. As noted recently by leading medical researchers in the journal Intensive Care Medicine, "Artificial Intelligence approaches such as machine learning may assist in identification of patients at risk of or fulfilling diagnostic criteria for ARDS, although this technology is not yet ready for clinical implementation".In ARDS, patient outcomes are poor, while hospital costs are huge - this collaboration will make breakthroughs in the clinical applicability of digital technologies for the earlier identification of ARDS, improving treatment of patients and reducing costs to healthcare providers.
该项目将联合收割机结合大规模电子患者数据、人工智能算法和机械数学模型,开发能够改善急性呼吸窘迫综合征(ARDS)危重患者诊断和治疗的系统。其核心思想是使用机械虚拟患者模型作为“过滤器”,提取个体患者的相关医疗信息,显著减少机器学习在异构数据集上引入的偏差,我建议与亚琛大学的Andreas Schuppert教授和德国拜耳医疗保健公司的Jörg Lippert博士建立合作关系,这将使我能够获得大规模的扩展患者数据和将机器学习应用于真实的临床问题的国际领先专业知识。正如领先的医学研究人员最近在《重症监护医学》杂志上所指出的那样,“人工智能方法(如机器学习)可能有助于识别处于ARDS风险或符合ARDS诊断标准的患者,尽管这项技术尚未准备好用于临床实施”。尽管医院成本巨大,但这项合作将在数字技术的临床应用方面取得突破,以更早地识别ARDS,改善患者治疗并降低医疗保健提供者的成本。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sina Saffaran其他文献

Development and validation of a computational simulator for pediatric acute respiratory distress syndrome patients
儿科急性呼吸窘迫综合征患者计算模拟器的开发和验证
Early prediction of non-invasive ventilation outcome using the TabPFN machine learning model: a multi-centre validation study
  • DOI:
    10.1007/s00134-025-08025-6
  • 发表时间:
    2025-07-10
  • 期刊:
  • 影响因子:
    21.200
  • 作者:
    Hang Yu;Sina Saffaran;Israel S. Maia;Enrico Clini;Declan G. Bates
  • 通讯作者:
    Declan G. Bates
In-silico modeling of COVID-19 ARDS: pathophysiological insights and potential management implications
COVID-19 ARDS 的计算机模拟:病理生理学见解和潜在的管理意义
  • DOI:
    10.1101/2020.07.21.20158659
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anup Das;Sina Saffaran;M. Chikhani;T. E. Scott;M. Laviola;N. Yehya;J. Laffey;J. Hardman;D. Bates
  • 通讯作者:
    D. Bates
An in-silico porcine model of phosgene-induced lung injury predicts clinically relevant benefits from application of continuous positive airway pressure up to 8 h post exposure.
光气引起的肺损伤的计算机猪模型预测了暴露后 8 小时内持续气道正压的应用所带来的临床相关益处。
  • DOI:
    10.1016/j.toxlet.2023.12.005
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Sonal Mistry;T. E. Scott;B. Jugg;R. Perrott;Sina Saffaran;Declan G. Bates
  • 通讯作者:
    Declan G. Bates
Inhaled sGC Modulator Can Lower PH in Patients With COPD Without Deteriorating Oxygenation
吸入 sGC 调节剂可降低 COPD 患者的 PH 值,且不影响氧合

Sina Saffaran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Mechanistic Multiscale Modelling Of Drug Release from Immediate Release Tablets
速释片剂药物释放的机制多尺度建模
  • 批准号:
    EP/X032019/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Research Grant
Mechanistic Multiscale Modelling of Drug Release from Immediate Release Tablets
速释片剂药物释放的机制多尺度建模
  • 批准号:
    EP/X031969/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Research Grant
Mechanistic niche predictive modelling of plant invasion at the range front
山脉前沿植物入侵的机械生态位预测模型
  • 批准号:
    EP/Y028473/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Fellowship
Mechanistic modelling of multitargeted therapeutics
多靶点治疗的机制建模
  • 批准号:
    2744704
  • 财政年份:
    2022
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Studentship
Mechanistic modelling of sustainability metrics and performance in broilers
肉鸡可持续性指标和性能的机械建模
  • 批准号:
    RGPIN-2020-04985
  • 财政年份:
    2022
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Discovery Grants Program - Individual
Excellence in Research’: Mechanistic Modelling and Validation Approaches to Decontaminate (+) ssRNA Viruses using Ultra-Violet Technologies
卓越研究 –:使用紫外线技术净化 ( ) ssRNA 病毒的机​​械建模和验证方法
  • 批准号:
    2200683
  • 财政年份:
    2022
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Standard Grant
Mechanistic modelling of colorectal carcinogenesis based on epidemiological data and an investigation of its validity
基于流行病学数据的结直肠癌发生机制模型及其有效性研究
  • 批准号:
    22K11951
  • 财政年份:
    2022
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CELLCOMP: Data-driven Mechanistic Modelling of Scalable Cellular Composites for Crash Energy Absorption
CELLCOMP:用于碰撞能量吸收的可扩展蜂窝复合材料的数据驱动机制建模
  • 批准号:
    EP/V049259/1
  • 财政年份:
    2022
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Research Grant
Mechanistic Multiscale Co-crystal Dissolution Modelling
机械多尺度共晶溶解建模
  • 批准号:
    EP/V047329/1
  • 财政年份:
    2021
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Research Grant
Mechanistic modelling of sustainability metrics and performance in broilers
肉鸡可持续性指标和性能的机械建模
  • 批准号:
    RGPIN-2020-04985
  • 财政年份:
    2021
  • 资助金额:
    $ 17.54万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了