Leveraging comparative genomics to elucidate the genetic determinants of limb skeletal proportion
利用比较基因组学阐明肢体骨骼比例的遗传决定因素
基本信息
- 批准号:10164722
- 负责人:
- 金额:$ 37.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAddressAdultAnimalsArm BonesBiochemicalBiologyCandidate Disease GeneCartilageChick EmbryoChiropteraChondrocytesChondrogenesisCleaved cellComplexCoupledDataData SetDevelopmentDigit structureDipodidaeDistalDolphinsDwarfismElementsEmbryoEnhancersEpiphysial cartilageEvolutionFingersForelimbGene ExpressionGene Transfer TechniquesGenesGeneticGenetic DeterminismGenomeGrowthHindlimbHumanIGF1 geneIGFBP5 geneIn VitroInsulin-Like Growth-Factor-Binding ProteinsKnowledgeLaboratoriesLaboratory miceLeg BonesLengthLimb structureLinkLocationMetatarsal bone structureModelingMusOrganOrganismOrthologous GenePathway interactionsPeptide HydrolasesPhalanx of handPhylogenetic AnalysisPositioning AttributePublic HealthRadialRegulatory ElementResearchResistanceRoleSequence HomologyShapesSignal PathwaySignal TransductionSignaling ProteinSkeletal DevelopmentSkeletonStructureTestingTissuesToesTransgenic MiceVertebratesWhole OrganismWingWorkbonecomparativecomparative genomicsdexteritydifferential expressionfootgene functiongraspin vivoinhibitor/antagonistlong boneloss of function mutationmutantnew growthorgan growthoverexpressionpredictive modelingskeletaltranscriptome sequencingulna
项目摘要
The length of each skeletal element changes independently during development and evolution to
transform an embryonic skeleton with similar sized cartilages into a diverse array of adult forms and functions.
Loss of function mutations of many genes produce proportionately dwarfed skeletons that suggest a common
“toolkit” is required for elongation of all of the long bones. Far less well understood, however, are the
mechanisms that establish the specific rate and duration of elongation at each growth plate, which together
determine adult limb skeletal proportion. What are the genes that define skeletal proportion? Is differential
growth controlled by modular enhancers that locally tune expression of genes common to all growth
plates and/or by genes that function only in subsets of growth plates?
Our laboratory is positioned to answer these profoundly important questions about how vertebrate limbs
acquire form and function using two uniquely suitable species: the laboratory mouse and the lesser Egyptian
jerboa. Among the nearest mouse relatives, the jerboa has the most extremely different hindlimbs with
extraordinarily long feet, but its forelimbs are similar to the mouse. These similarities and differences coupled
with high genome sequence homology enable the identification of genetic mechanisms that locally control
skeletal growth rate. RNA-Seq analysis of mouse and jerboa forelimb and hindlimb elements revealed that
10% of orthologous genes are differentially expressed correlating with relative growth rates within and between
species. These include 40 genes with strong evidence for enhancer modularity in both species. Aim 1 will
implement comparative ATAC-Seq and mouse transgenesis to identify and functionally test modular enhancers
in the mouse and jerboa genomes. We predict that some of these 40 genes are controlled by radius/ulna
enhancers that are conserved between species and by distinct metatarsal enhancers that functionally diverged
in jerboa and allowed the uncoupled evolution of jerboa hindlimb proportion.
Our expression data also provides a valuable opportunity to fill critical gaps in our understanding of the
genes that regulate limb skeletal growth and proportion in all vertebrates. We previously showed that IGF1
signaling is required in mice for hypertrophic chondrocyte size differences in growth plates that elongate at
different rates. Although IGF1 has a well-established role in whole organism and organ growth, it is unclear
how the pathway is locally regulated to modulate differential growth. In Aim 2, we will biochemically test the
hypothesis that elevated protease expression in rapidly elongating skeletal elements cleaves IGF binding
proteins thus freeing bioactive IGF1 protein for signaling to accelerate growth. Although six other high priority
candidate genes are also expected to be critical regulators of skeletal growth, they have not yet been attributed
growth plate functions. Aim 3 will implement a powerful overexpression approach in chicken embryos to test
the hypothesis that each of these genes is sufficient to accelerate or inhibit limb growth rate.
每个骨骼元件的长度在开发和演变过程中独立变化
将具有相似大小软骨的胚胎骨骼转化为一系列成人形式和功能。
许多基因的功能突变的丧失产生的骨骼成比例矮小的骨骼,这表明一个常见的骨骼
所有长骨的伸长需要“工具包”。然而,不太了解的是
在每个生长板上建立特定速率和延伸持续时间的机制,共同
确定成年肢体骨骼比例。定义骨骼比例的基因是什么?是差异
由模块化增强子控制的生长,这些增强子在局部调节所有生长共有基因的表达
板和/或仅在生长板子集中起作用的基因?
我们的实验室可以回答有关脊椎动物如何如何
使用两个独特的物种获取形式和功能:实验室小鼠和较小的埃及人
杰博亚。在最近的老鼠亲戚中,Jerboa具有最大不同的后肢
非常长的脚,但它的前肢与鼠标相似。这些相似性和差异耦合
具有高基因组序列同源性可以鉴定局部控制的遗传机制
骨骼生长速率。小鼠和Jerboa前肢和后肢元素的RNA-seq分析表明,
直系同源基因的10%与内部和之间的相对增长率相关。
物种。其中包括40个基因,有强烈的证据证明这两个物种都有增强子模块化。目标1意志
实施比较ATAC-SEQ和鼠标转基因以识别和在功能上测试模块化增强器
在小鼠和Jerboa基因组中。我们预测,这40个基因中的一些受半径/尺度控制
物种和通过功能差异的不同meta骨增强剂之间保守的增强剂
在Jerboa中,允许Jerboa Hindb比例未耦合。
我们的表达数据还提供了一个宝贵的机会,以填补我们对
调节所有脊椎动物的肢体骨骼生长和比例的基因。我们以前表明IGF1
小鼠需要信号传导,以使生长板的肥厚软骨细胞尺寸差异拉长
尽管IGF1在整个生物体和器官的生长中都有良好的作用,但尚不清楚
该途径如何在局部调节以调节差异生长。在AIM 2中,我们将在生化测试
假设升高的蛋白酶表达在快速伸长的骨骼元件中裂解IGF结合
蛋白质因此使生物活性IGF1蛋白释放信号传导以加速生长。虽然其他六个高优先级
预计候选基因也将是骨骼生长的关键调节因子,尚未归因于
生长板功能。 AIM 3将在鸡胚胎中实施强大的过表达方法进行测试
这些基因中的每一个都足以加速或抑制肢体生长速率的假设。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kimberly Lynn Cooper其他文献
Kimberly Lynn Cooper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kimberly Lynn Cooper', 18)}}的其他基金
Development of approaches to apply CRISPR/Cas9-mediated gene conversion to model complex genetic traits in mice
开发应用 CRISPR/Cas9 介导的基因转换来模拟小鼠复杂遗传性状的方法
- 批准号:
10565297 - 财政年份:2023
- 资助金额:
$ 37.86万 - 项目类别:
Engineering and validation of two conditional multi-gene mouse models of skeletal development
两种条件多基因小鼠骨骼发育模型的工程和验证
- 批准号:
10215395 - 财政年份:2020
- 资助金额:
$ 37.86万 - 项目类别:
Engineering and validation of two conditional multi-gene mouse models of skeletal development
两种条件多基因小鼠骨骼发育模型的工程和验证
- 批准号:
10043332 - 财政年份:2020
- 资助金额:
$ 37.86万 - 项目类别:
Leveraging comparative genomics to elucidate the genetic determinants of limb skeletal proportion
利用比较基因组学阐明肢体骨骼比例的遗传决定因素
- 批准号:
9895624 - 财政年份:2019
- 资助金额:
$ 37.86万 - 项目类别:
Leveraging comparative genomics to elucidate the genetic determinants of limb skeletal proportion
利用比较基因组学阐明肢体骨骼比例的遗传决定因素
- 批准号:
10599856 - 财政年份:2019
- 资助金额:
$ 37.86万 - 项目类别:
An exploration of the mechanisms of naturally occurring limb muscle loss during neonatal development
新生儿发育过程中自然发生的肢体肌肉丧失机制的探索
- 批准号:
9882964 - 财政年份:2019
- 资助金额:
$ 37.86万 - 项目类别:
Leveraging comparative genomics to elucidate the genetic determinants of limb skeletal proportion
利用比较基因组学阐明肢体骨骼比例的遗传决定因素
- 批准号:
9762600 - 财政年份:2019
- 资助金额:
$ 37.86万 - 项目类别:
Leveraging comparative genomics to elucidate the genetic determinants of limb skeletal proportion
利用比较基因组学阐明肢体骨骼比例的遗传决定因素
- 批准号:
10382419 - 财政年份:2019
- 资助金额:
$ 37.86万 - 项目类别:
MicroRNA Function in the Developing Vertebrate Limb
MicroRNA 在脊椎动物肢体发育中的功能
- 批准号:
7237363 - 财政年份:2006
- 资助金额:
$ 37.86万 - 项目类别:
MicroRNA Function in the Developing Vertebrate Limb
MicroRNA 在脊椎动物肢体发育中的功能
- 批准号:
7425332 - 财政年份:2006
- 资助金额:
$ 37.86万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating HDAC3 phosphorylation as an epigenetic regulator of memory formation in the adult and aging brain
研究 HDAC3 磷酸化作为成人和衰老大脑记忆形成的表观遗传调节剂
- 批准号:
10752404 - 财政年份:2023
- 资助金额:
$ 37.86万 - 项目类别:
Defining mechanisms of metabolic-epigenetic crosstalk that drive glioma initiation
定义驱动神经胶质瘤发生的代谢-表观遗传串扰机制
- 批准号:
10581192 - 财政年份:2023
- 资助金额:
$ 37.86万 - 项目类别:
Microglial Activation and Inflammatory Endophenotypes Underlying Sex Differences of Alzheimer’s Disease
阿尔茨海默病性别差异背后的小胶质细胞激活和炎症内表型
- 批准号:
10755779 - 财政年份:2023
- 资助金额:
$ 37.86万 - 项目类别:
Impact of SARS-CoV-2 infection on respiratory viral immune responses in children with and without asthma
SARS-CoV-2 感染对患有和不患有哮喘的儿童呼吸道病毒免疫反应的影响
- 批准号:
10568344 - 财政年份:2023
- 资助金额:
$ 37.86万 - 项目类别:
Gene regulatory networks in early lung epithelial cell fate decisions
早期肺上皮细胞命运决定中的基因调控网络
- 批准号:
10587615 - 财政年份:2023
- 资助金额:
$ 37.86万 - 项目类别: