VR-Based Evaluation and Training System for Emergency Responders and Managers

基于 VR 的应急响应人员和管理人员评估和培训系统

基本信息

  • 批准号:
    10164783
  • 负责人:
  • 金额:
    $ 20.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-01 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

Virtual and Augmented Reality (VR/AR) systems are increasingly being utilized as training platforms for complex, extremely demanding or rarely executed tasks. Often, VR systems focus primarily on delivering increasingly realistic scenarios for training purposes without any capability to assess or refine trainee performance in situ. Our novel VR training platform to deliver HAZMAT training not only delivers realistic scenarios, but also measures and evaluates performance using scientifically validated measures of variables associated with both individual and team performance. The advantage of our approach is to immerse first responders in HAZMAT emergency scenarios that are realistic and also designed to focus on measurement and refinement of specific areas of performance. Key contributors to performance among emergency responders and managers were identified by an extensive review of the literature and subsequent tested for association by psychometric assessment of over three hundred emergency responders. A subset of 18 highly associated contributors were then identified through statistical analysis of survey results. These contributors can be measurably represented in VR Training scenario elements. Performance related to each can then be measured and assessed for individual or team trainees. These refined key contributors can then be validated on larger, more diverse samples of emergency responders using the beta version of our proposed VR-based system. Our VR system is also a configurable platform that enables the evaluation and training of a wide range of skills needed by distinct roles (police, firefighters, EMTs, etc.) in diverse scenarios such as biosafety spills, HAZMAT disasters and bioterrorism threats. Also, HAZMAT disasters that are rare or very difficult/costly to create real world training events can be more easily and cost effectively mastered. Scenarios also can be dynamically modulated by trainer input in real-time, or by computerized Artificial Intelligence analysis of performance and trainee real-time physiological measures to rapidly optimize specific key contributor performance of individuals and teams. Rapid, efficient and effective training of emergency responders serves the ultimate goal of minimizing potential catastrophic consequences of these events.
虚拟和增强现实(VR/AR)系统越来越多地被用作培训 复杂、要求极高或很少执行的任务。通常,VR系统专注于 主要是为了训练目的提供越来越现实的情景, 在现场评估或改进受训者的表现。我们新颖的VR培训平台提供HAZMAT 培训不仅提供真实的场景,而且还使用 与个人和团队相关的变量的科学验证措施 性能我们的方法的优势是沉浸在危险品的第一反应 紧急情况情景是现实的,也旨在重点衡量和完善 具体的业绩领域。应急响应人员绩效的关键因素 和管理人员确定了广泛的文献回顾和随后的测试, 通过对300多名紧急救援人员的心理测量评估,的子集 然后通过对调查结果的统计分析确定了18个高度相关的贡献者。 这些贡献者可以在VR培训场景元素中进行可测量的表示。性能 然后可以为个人或团队受训者测量和评估与每个相关的信息。这些细化 然后,可以在更大、更多样化的应急响应者样本上验证关键贡献者 使用我们提出的基于VR的系统的测试版。我们的VR系统也是一个可配置的 一个平台,可以评估和培训不同角色所需的各种技能 (警察、消防员、急救人员等)在不同的情况下,如生物安全泄漏,危险品灾难, 生物恐怖主义威胁。此外,罕见或非常困难/昂贵的HAZMAT灾难 真实的世界训练事件可以更容易地和成本有效地掌握。场景也可以是 由教练实时输入或计算机化人工智能动态调制 性能分析和受训者实时生理测量,以快速优化特定的 个人和团队的关键贡献者绩效。快速、高效和有效的培训 应急响应人员的最终目标是最大限度地减少潜在的灾难性后果 这些事件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Robinson Buras其他文献

William Robinson Buras的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Robinson Buras', 18)}}的其他基金

Mixed Reality Laboratory Training Suite
混合现实实验室培训套件
  • 批准号:
    10010011
  • 财政年份:
    2020
  • 资助金额:
    $ 20.01万
  • 项目类别:

相似海外基金

I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 20.01万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 20.01万
  • 项目类别:
    Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 20.01万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 20.01万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 20.01万
  • 项目类别:
    Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 20.01万
  • 项目类别:
    Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    $ 20.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 20.01万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 20.01万
  • 项目类别:
    EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.01万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了