ShapeWorks in the Cloud

云中的 ShapeWorks

基本信息

  • 批准号:
    10166337
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary This application is submitted in response to NOT-OD-20-073 as an administrative supplement to the parent award R01AR076120 titled: "Anatomy Directly from Imagery: General-purpose, Scalable, and Open-source Machine Learning Approaches." The form (or shape) of anatomies is the clinical language that describes abnormal mor- phologies tied to pathologic functions. Quantifying such subtle morphological shape changes requires parsing the anatomy into a quantitative description that is consistent across the population in question. For more than 100 years, morphometrics has been an indispensable quantitative tool in medical and biological sciences to study anatomical forms. But its representation capacity is limited to linear distances, angles, and areas. Sta- tistical shape modeling (SSM) is the computational extension of classical morphometric techniques to analyze more detailed representations of complex anatomy and their variability within populations The parent award ad- dresses existing roadblocks for the widespread adoption of SSM computational tools in the context of a flexible and general SSM approach termed particle-based shape modeling (PSM) and its associated suite of open-source software tools, ShapeWorks. ShapeWorks enables learning population-level shape representation via automatic dense placement of homologous landmarks on image segmentations of general anatomy with arbitrary topology. The utility of ShapeWorks has been demonstrated in a range of biomedical applications. ShapeWorks has the potential to transform the way researchers approach studies of anatomical forms, but its widespread applicability and impact to medicine and biology are hindered by computational barriers that most existing shape modeling packages face. The goal of this supplement award is to provide supplemental support for Aim 3 of the parent award to leverage best practices in software development and advances in cloud computing to enable researchers with limited computational resources and/or large-scale cohorts to build and execute custom SSM workflows us- ing remote scalable computational resources. To achieve this goal, we have developed a plan to enhance the design, implementation, and cloud-readiness of ShapeWorks and augmented our scientific team to add senior, experienced software engineers/developers who have extensive experience in professional programming, code refactoring, and scientific computing. This award will provide our team with the support necessary to (Aim 1) de- sign ShapeWorks as a collection of modular and reusable services, (Aim 2) decouple ShapeWorks services from explicitly encoded data sources, and (Aim 3) refactor ShapeWorks to scale efficiently on the cloud. All software development will be performed in adherence to software engineering practices and design principles, including coding style, documentation, and version control. The proposed efforts will be released as open-source software in a manner consistent with the principles of reproducible research and the practices of open science. Our long- term goal is to make ShapeWorks a standard tool for shape analyses in medicine, and the work proposed herein in addition to the parent award will establish the groundwork for achieving this goal.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shireen Youssef Elhabian其他文献

Shireen Youssef Elhabian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shireen Youssef Elhabian', 18)}}的其他基金

Anatomy Directly from Imagery: General-purpose, Scalable, and Open-source Machine Learning Approaches
直接从图像进行解剖:通用、可扩展和开源机器学习方法
  • 批准号:
    10171789
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:
Anatomy Directly from Imagery: General-purpose, Scalable, and Open-source Machine Learning Approaches
直接从图像进行解剖:通用、可扩展和开源机器学习方法
  • 批准号:
    9803774
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:
ShapeWorksStudio: An Integrative, User-Friendly, and Scalable Suite for Shape Representation and Analysis
ShapeWorksStudio:用于形状表示和分析的集成、用户友好且可扩展的套件
  • 批准号:
    10646213
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:
ShapeWorksStudio: An Integrative, User-Friendly, and Scalable Suite for Shape Representation and Analysis
ShapeWorksStudio:用于形状表示和分析的集成、用户友好且可扩展的套件
  • 批准号:
    10023935
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:

相似海外基金

An innovative, AI-driven prehabilitation platform that increases adherence, enhances post-treatment outcomes by at least 50%, and provides cost savings of 95%.
%20创新、%20AI驱动%20康复%20平台%20%20增加%20依从性、%20增强%20治疗后%20结果%20by%20at%20至少%2050%、%20和%20提供%20成本%20节省%20of%2095%
  • 批准号:
    10057526
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant for R&D
Improving Repositioning Adherence in Home Care: Supporting Pressure Injury Care and Prevention
提高家庭护理中的重新定位依从性:支持压力损伤护理和预防
  • 批准号:
    490105
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Operating Grants
I-Corps: Medication Adherence System
I-Corps:药物依从性系统
  • 批准号:
    2325465
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Unintrusive Pediatric Logging Orthotic Adherence Device: UPLOAD
非侵入式儿科记录矫形器粘附装置:上传
  • 批准号:
    10821172
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
  • 批准号:
    10766947
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
CO-LEADER: Intervention to Improve Patient-Provider Communication and Medication Adherence among Patients with Systemic Lupus Erythematosus
共同领导者:改善系统性红斑狼疮患者的医患沟通和药物依从性的干预措施
  • 批准号:
    10772887
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
  • 批准号:
    10594350
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
Antiretroviral therapy adherence and exploratory proteomics in virally suppressed people with HIV and stroke
病毒抑制的艾滋病毒和中风患者的抗逆转录病毒治疗依从性和探索性蛋白质组学
  • 批准号:
    10748465
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
  • 批准号:
    10591441
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
Development and implementation of peer-facilitated decision-making and referral support to increase uptake and adherence to HIV pre-exposure prophylaxis in African Caribbean and Black communities in Ontario
制定和实施同行协助决策和转介支持,以提高非洲加勒比地区和安大略省黑人社区对艾滋病毒暴露前预防的接受和依从性
  • 批准号:
    491109
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Fellowship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了