ShapeWorksStudio: An Integrative, User-Friendly, and Scalable Suite for Shape Representation and Analysis
ShapeWorksStudio:用于形状表示和分析的集成、用户友好且可扩展的套件
基本信息
- 批准号:10023935
- 负责人:
- 金额:$ 25.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAnatomic ModelsAnatomyApplied ResearchAreaBig DataBindingBiologicalBiological SciencesBiological TestingBiologyBiomedical ResearchCardiologyClinicalClinical ResearchClinical TrialsCommunitiesComplexComplex AnalysisComputer softwareComputersConsensusDataData SetDevelopmentDimensionsElectronic MailEnsureExhibitsFaceFundingFutureGoalsImageInterdisciplinary StudyLaboratory ResearchLanguageLearningLicensingMachine LearningMaintenanceManualsMathematicsMeasuresMedicalMedicineMemoryMethodsModelingModernizationModificationMorphologyNormalcyOperative Surgical ProceduresOrthopedicsPhenotypePopulationProcessProgramming LanguagesPsychologyReconstructive Surgical ProceduresReproducibilityResearchResearch PersonnelScientistShapesSoftware EngineeringSoftware ToolsStatistical Data InterpretationSupervisionTechniquesTechnologyTestingTimeWorkautomated segmentationbaseclinical applicationclinical careclinical investigationcohortcommercializationcomputerized toolscostdesignexperienceflexibilityimaging Segmentationimprovedinnovationinterestinteroperabilitymedical implantopen sourceoutreachparticlepatient populationreconstructionresearch and developmentshape analysissoftware developmentstatisticstoolusabilityuser-friendly
项目摘要
Project Summary
The morphology (or shape) of anatomical structures forms the common language among clinicians, where ab-
normalities in anatomical shapes are often tied to deleterious function. While these observations are often quali-
tative, finding subtle, quantitative shape effects requires the application of mathematics, statistics, and computing
to parse the anatomy into a numerical representation that will facilitate testing of biologically relevant hypotheses.
Particle-based shape modeling (PSM) and its associated suite of software tools, ShapeWorks, enable learning
population-level shape representation via automatic dense placement of homologous landmarks on image seg-
mentations of general anatomy with arbitrary topology. The utility of ShapeWorks has been demonstrated in a
range of biomedical applications. Despite its obvious utility for the research enterprise and highly permissive
open-source license, ShapeWorks does not have a viable commercialization path due to the inherent trade-off
between development and maintenance costs, and a specialized scientific and clinical market. ShapeWorks has
the potential to transform the way researchers approach studies of anatomical forms, but its widespread ap-
plicability to medicine and biology is hindered by several barriers that most existing shape modeling packages
face. The most important roadblocks are (1) the complexity and steep learning curve of existing shape modeling
pipelines and their increased computational and computer memory requirements; (2) the considerable expertise,
time, and effort required to segment anatomies of interest for statistical analyses; and (3) the lack of interoperable
implementations that can be readily incorporated into biomedical research laboratories. In this project, we pro-
pose ShapeWorksStudio, a software suite that leverages ShapeWorks for the automated population-/patient-level
modeling of anatomical shapes, and Seg3D – a widely used open-source tool to visualize and process volumet-
ric images – for flexible manual/semiautomatic segmentation and interactive manual correction of segmented
anatomy. In Aim 1, we will integrate ShapeWorks and Seg3D in a framework that supports big data cohorts to
enable users to transparently proceed from image data to shape models in a straightforward manner. In Aim 2,
we will endow Seg3D with a machine learning approach that provides automated segmentations within a statisti-
cal framework that combines image data with population-specific shape priors provided by ShapeWorks. In Aim
3, we will support interoperability with existing open-source software packages and toolkits, and provide bindings
to commonly used programming languages in the biomedical research community. To promote reproducibility,
we will develop and disseminate standard workflows and domain-specific test cases. This project combines an
interdisciplinary research and development team with decades of experience in statistical analysis and image
understanding, and application scientists to confirm that the proposed developments have a real impact on the
biomedical and clinical research communities. Our long-term goal is to make ShapeWorks a standard tool for
shape analyses in medicine, and the work proposed herein will establish the groundwork for achieving this goal.
项目摘要
解剖结构的形态(或形状)形成了临床医生之间的共同语言,其中,
解剖学上的畸形常常与有害的功能有关。虽然这些观察往往是定性的,
要发现微妙的、定量的形状效应,需要应用数学、统计学和计算
将解剖结构解析为便于检验生物学相关假设的数值表示。
基于粒子的形状建模(PSM)及其相关的软件工具套件,ShapeWorks,使学习
通过在图像分割上自动密集放置同源标志的群体水平形状表示,
具有任意拓扑结构的一般解剖学的说明。ShapeWorks的实用性已在
一系列生物医学应用。尽管它对研究企业有明显的效用,
开源许可证,ShapeWorks没有一个可行的商业化道路,由于固有的权衡
在开发和维护成本以及专业的科学和临床市场之间。ShapeWorks拥有
改变研究人员研究解剖形式的方式的潜力,但其广泛的应用,
医学和生物学的可折叠性受到几个障碍的阻碍,
脸上最重要的障碍是(1)现有形状建模的复杂性和陡峭的学习曲线
流水线及其增加的计算和计算机存储器需求;(2)相当多的专业知识,
分割感兴趣的解剖结构以进行统计分析所需的时间和精力;以及(3)缺乏可互操作的
这些实施方式可以容易地并入生物医学研究实验室。在这个项目中,我们支持-
pose ShapeWorksStudio,一个利用ShapeWorks实现自动化人群/患者级别的软件套件
解剖形状的建模,以及Seg 3D-一种广泛使用的开源工具,用于可视化和处理体积-
ric图像-用于灵活的手动/半自动分割和交互式手动校正分割
解剖学在目标1中,我们将在一个支持大数据队列的框架中集成ShapeWorks和Seg 3D,
使用户能够以直接的方式透明地从图像数据进行到形状模型。在目标2中,
我们将赋予Seg 3D一种机器学习方法,在统计数据中提供自动分割,
这是一个将图像数据与ShapeWorks提供的特定人群形状先验相结合的cal框架。在Aim中
3、我们将支持与现有开源软件包和工具包的互操作性,并提供绑定
到生物医学研究界常用的编程语言。为了提高可重复性,
我们将开发和传播标准工作流程和特定领域的测试案例。该项目结合了
拥有数十年统计分析和成像经验跨学科研发团队
理解和应用科学家确认,拟议的发展有真实的影响,
生物医学和临床研究社区。我们的长期目标是使ShapeWorks成为标准工具,
形状分析在医学中的应用,本文提出的工作将为实现这一目标奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shireen Youssef Elhabian其他文献
Shireen Youssef Elhabian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shireen Youssef Elhabian', 18)}}的其他基金
Anatomy Directly from Imagery: General-purpose, Scalable, and Open-source Machine Learning Approaches
直接从图像进行解剖:通用、可扩展和开源机器学习方法
- 批准号:
10171789 - 财政年份:2019
- 资助金额:
$ 25.66万 - 项目类别:
Anatomy Directly from Imagery: General-purpose, Scalable, and Open-source Machine Learning Approaches
直接从图像进行解剖:通用、可扩展和开源机器学习方法
- 批准号:
9803774 - 财政年份:2019
- 资助金额:
$ 25.66万 - 项目类别:
ShapeWorksStudio: An Integrative, User-Friendly, and Scalable Suite for Shape Representation and Analysis
ShapeWorksStudio:用于形状表示和分析的集成、用户友好且可扩展的套件
- 批准号:
10646213 - 财政年份:2019
- 资助金额:
$ 25.66万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 25.66万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 25.66万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 25.66万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 25.66万 - 项目类别:
Standard Grant