Mechanism-Driven Virtual Adverse Outcome Pathway Modeling for Hepatotoxicity

机制驱动的肝毒性虚拟不良结果途径建模

基本信息

  • 批准号:
    10166848
  • 负责人:
  • 金额:
    $ 45.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-19 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Experimental animal and clinical testing to evaluate hepatotoxicity demands extensive resources and long turnaround times. Utilization of computational models to directly predict the toxicity of new compounds is a promising strategy to reduce the cost of drug development and to screen the multitude of industrial chemicals and environmental contaminants currently lacking safety assessments. However, the current computational models for complex toxicity endpoints, such as hepatotoxicity, are not reliable for screening new compounds and face numerous challenges. Our recent studies have shown that traditional Quantitative Structure-Activity Relationship modeling is applicable for relatively simple properties or toxicity endpoints with a clear mechanism, but fails to address complex bioactivities such as hepatotoxicity. The primary objective of this proposal is to develop novel mechanism-driven Virtual Adverse Outcome Pathway (vAOP) models for the fast and accurate assessment of hepatotoxicity in a high-throughput manner The resulting vAOP models will be experimentally validated using a complement of in vitro and ex vivo testing. We have generated a preliminary vAOP model based on the antioxidant response element (ARE) pathway that has undergone initial validation and refinement using in vitro testing. To this end, our project will generate novel predictive models for hepatotoxicity by applying 1) a virtual cellular stress pathway model to mechanism profiling and assessment of new compounds; 2) computational predictions to fill in the missing data for specific targets within the pathway; 3) in vitro experimental validation with three complementary bioassays; and 4) ex vivo experimental validation with pooled primary human hepatocytes capable of biochemical transformation. The scientific approach of this study is to develop a universal modeling workflow that can take advantage of all available short-term testing information, obtained from both computational predictions using novel machine learning approaches and in vitro experiments, for target compounds of interest. We will validate and use our modeling workflow to directly evaluate the hepatotoxicity of new compounds and prioritize candidates for validation in pooled primary human hepatocytes. The resulting workflow will be disseminated via a web portal for public users around the world with internet access. Importantly, this study will pave the way for the next generation of chemical toxicity assessment by reconstructing the modeling process through a combination of big data, computational modeling, and low cost in vitro experiments. To the best of our knowledge, the implementation of this project will lead to the first publicly available mechanisms-driven modeling and web- based prediction framework for complex chemical toxicity based on publicly-accessible big data. These deliverables will have a significant public health impact by not only prioritizing compounds for safety testing or new chemical development, but also revealing toxicity mechanisms.
项目总结/摘要 评估肝毒性的实验动物和临床试验需要大量资源, 周转时间长。利用计算模型直接预测新化合物的毒性是一种新的方法。 这是一项很有前途的战略,可以降低药物开发成本,并筛选大量的工业化学品。 以及目前缺乏安全评估的环境污染物。然而,目前的计算 复杂毒性终点(如肝毒性)的模型对于筛选新化合物并不可靠 并面临诸多挑战。我们最近的研究表明,传统的定量结构-活性 关系建模适用于相对简单的性质或毒性终点, 机制,但未能解决复杂的生物活性,如肝毒性。这项工作的主要目的是 一项提案是为研究开发新的机制驱动的虚拟不良结果途径(vAOP)模型。 以高通量的方式快速准确地评估肝毒性。 使用体外和离体测试的补充进行实验验证。我们创造了一个 基于抗氧化反应元件(ARE)途径的初步vAOP模型, 使用体外测试进行初步验证和改进。为此,我们的项目将产生新的预测 通过应用1)虚拟细胞应激途径模型进行机制分析, 新化合物的评估; 2)计算预测,以填补特定目标的缺失数据 3)用三种互补生物测定法进行体外实验验证;以及4)离体 用能够生化转化的合并原代人肝细胞进行实验验证。的 本研究的科学方法是开发一个通用的建模工作流程,可以利用所有 可用的短期测试信息,从使用新机器的计算预测中获得 学习方法和体外实验,为目标化合物的利益。我们将验证并使用我们的 建模工作流程,以直接评估新化合物的肝毒性,并优先考虑候选药物, 在合并的原代人肝细胞中进行验证。由此产生的工作流程将通过一个门户网站传播 为世界各地的公众用户提供互联网接入。重要的是,这项研究将为下一项研究铺平道路。 通过以下组合重建建模过程来生成化学毒性评估: 大数据、计算建模和低成本的体外实验。据我们所知, 该项目的实施将导致第一个公开可用的机制驱动的建模和网络, 基于公众可访问的大数据的复杂化学品毒性预测框架。这些 可交付成果将产生重大的公共卫生影响,不仅优先考虑安全测试的化合物, 新的化学发展,但也揭示了毒性机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hao Zhu其他文献

Hao Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hao Zhu', 18)}}的其他基金

Mechanism-Driven Virtual Adverse Outcome Pathway Modeling for Hepatotoxicity
机制驱动的肝毒性虚拟不良结果途径建模
  • 批准号:
    10940417
  • 财政年份:
    2023
  • 资助金额:
    $ 45.75万
  • 项目类别:
Mechanism-Driven Virtual Adverse Outcome Pathway Modeling for Hepatotoxicity
机制驱动的肝毒性虚拟不良结果途径建模
  • 批准号:
    10675944
  • 财政年份:
    2023
  • 资助金额:
    $ 45.75万
  • 项目类别:
Virtual nanostructure simulation (VINAS) portal
虚拟纳米结构模拟 (VINAS) 门户
  • 批准号:
    10567076
  • 财政年份:
    2023
  • 资助金额:
    $ 45.75万
  • 项目类别:
Determining how chronic ETOH influences the regenerative activities of hepatocyte subpopulations
确定慢性 ETOH 如何影响肝细胞亚群的再生活动
  • 批准号:
    10297361
  • 财政年份:
    2021
  • 资助金额:
    $ 45.75万
  • 项目类别:
Determining how chronic ETOH influences the regenerative activities of hepatocyte subpopulations
确定慢性 ETOH 如何影响肝细胞亚群的再生活动
  • 批准号:
    10458730
  • 财政年份:
    2021
  • 资助金额:
    $ 45.75万
  • 项目类别:
Determining how chronic ETOH influences the regenerative activities of hepatocyte subpopulations
确定慢性 ETOH 如何影响肝细胞亚群的再生活动
  • 批准号:
    10616522
  • 财政年份:
    2021
  • 资助金额:
    $ 45.75万
  • 项目类别:
Investigating imitation SWI chromatin remodeling complexes in mammalian tissue regeneration
研究哺乳动物组织再生中的仿 SWI 染色质重塑复合物
  • 批准号:
    10436812
  • 财政年份:
    2020
  • 资助金额:
    $ 45.75万
  • 项目类别:
Improving hepatocellular carcinoma mouse modeling by understanding the malignant potential and biology of liver cell subpopulations
通过了解肝细胞亚群的恶性潜能和生物学来改善肝细胞癌小鼠模型
  • 批准号:
    10610474
  • 财政年份:
    2020
  • 资助金额:
    $ 45.75万
  • 项目类别:
Mechanism-Driven Virtual Adverse Outcome Pathway Modeling for Hepatotoxicity
机制驱动的肝毒性虚拟不良结果途径建模
  • 批准号:
    10350701
  • 财政年份:
    2020
  • 资助金额:
    $ 45.75万
  • 项目类别:
Improving hepatocellular carcinoma mouse modeling by understanding the malignant potential and biology of liver cell subpopulations
通过了解肝细胞亚群的恶性潜能和生物学来改善肝细胞癌小鼠模型
  • 批准号:
    10172879
  • 财政年份:
    2020
  • 资助金额:
    $ 45.75万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 45.75万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 45.75万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 45.75万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 45.75万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 45.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 45.75万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 45.75万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 45.75万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 45.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 45.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了