Virtual nanostructure simulation (VINAS) portal

虚拟纳米结构模拟 (VINAS) 门户

基本信息

  • 批准号:
    10567076
  • 负责人:
  • 金额:
    $ 16.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2023-10-31
  • 项目状态:
    已结题

项目摘要

The use of nanomaterials, especially Engineered Nanomaterials (ENMs), in consumer products and medicine has been skyrocketing over the past decade. Various in vitro and in vivo studies evaluating the potential environmental and health effects of ENMs have generated vast quantities of experimental data, requiring urgent curation for information extraction, analysis/modeling, and data/model sharing using artificial intelligence methods. Computational modeling methods, especially machine learning and deep learning approaches, bear high expectations to develop predictive models for ENMs based on the available property/activity/toxicity data. Currently ENMs databases do not consist of nanostructure annotations to store diverse structural information in machine readable formats that are critical for computational modeling studies. To address this challenge in the current big data era, we will develop a large, publicly available ENMs portal that contains annotated nanostructures of more than 3,000 ENMs suitable for the computational modeling research, which will lead to the rational nanomedicine design. The ongoing Nanotechnology Health Implication Research (NHIR) consortium is providing high quality ENMs data for the initial ENMs database of this portal and will also support future data curations. This database will be designed based on Virtual Nanostructure Simulation (VINAS) technique, which will annotate the complex nanostructures into machine readable formats that are suitable for the machine learning modeling purpose. To this end, we will develop various new computational approaches to annotate the nanostructures, especially for complex ENMs (e.g. graphene derivatives). After that, we will use new machine learning and deep learning algorithms, such as additive model and explainable AI guided semi- supervised deep learning technique, to develop predictive models using the ENMs data of the curated database as the proof of concept. For example, a virtual nanomaterial projection approach that is based on deep learning, particularly the explainable AI guided semi-supervised generative adversarial networks, will be especially adept at handling the annotated nanostructures. In the VINAS database web portal as the final deliverables, the curated ENMs- bioactivity/property/toxicity data and annotated nanostructures will be shared as downloadable files for public community to use. And the resulting new deep learning predictive models will be shared as well. This study provides a new public platform to future data-driven nanoinformatics modeling studies, especially those machine learning based approaches, and can greatly advance the rational nanomedicine design and other areas of modern nanoinformatics.
纳米材料,特别是工程纳米材料(ENM)在消费品中的应用 过去十年来,产品和药品的价格一直在飙升。各种体外和体内 评估ENM潜在的环境和健康影响的研究已经产生了大量的 大量的实验数据,需要紧急管理以提取信息, 分析/建模和使用人工智能方法的数据/模型共享。计算 建模方法,特别是机器学习和深度学习方法, 期望根据现有的ENM开发预测模型, 性质/活性/毒性数据。目前ENMs数据库不包括纳米结构 注释,以机器可读格式存储各种结构信息, 用于计算机建模研究。为了应对当前大数据时代的挑战,我们将 开发一个大型的、公开可用的ENMs门户网站,其中包含更多注释的纳米结构, 超过3,000个ENM适合于计算建模研究,这将导致合理的 纳米医学设计纳米技术健康影响研究(NHIR) 联盟正在为该门户网站的初始ENMs数据库提供高质量的ENMs数据, 还将支持未来的数据管理。该数据库将基于虚拟 纳米结构模拟(VINAS)技术,将注释复杂的纳米结构 转换成适合于机器学习建模目的的机器可读格式。到 为此,我们将开发各种新的计算方法来注释纳米结构, 特别是对于复杂的ENM(例如石墨烯衍生物)。之后,我们将使用新机器 学习和深度学习算法,如加性模型和可解释的人工智能引导的半 监督式深度学习技术,使用ENM数据开发预测模型 策展数据库作为概念验证。例如,虚拟纳米材料投影 基于深度学习的方法,特别是可解释的人工智能引导的半监督 生成对抗网络,将特别擅长处理注释 纳米结构。在VINAS数据库门户网站上,作为最终交付成果, 生物活性/性质/毒性数据和注释的纳米结构将作为可下载的共享 文件供公众使用。由此产生的新的深度学习预测模型将是 也分享了。该研究为未来数据驱动的纳米信息学提供了一个新的公共平台 建模研究,特别是那些基于机器学习的方法,可以大大 推进合理的纳米医学设计和现代纳米信息学的其他领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hao Zhu其他文献

Hao Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hao Zhu', 18)}}的其他基金

Mechanism-Driven Virtual Adverse Outcome Pathway Modeling for Hepatotoxicity
机制驱动的肝毒性虚拟不良结果途径建模
  • 批准号:
    10940417
  • 财政年份:
    2023
  • 资助金额:
    $ 16.89万
  • 项目类别:
Mechanism-Driven Virtual Adverse Outcome Pathway Modeling for Hepatotoxicity
机制驱动的肝毒性虚拟不良结果途径建模
  • 批准号:
    10675944
  • 财政年份:
    2023
  • 资助金额:
    $ 16.89万
  • 项目类别:
Determining how chronic ETOH influences the regenerative activities of hepatocyte subpopulations
确定慢性 ETOH 如何影响肝细胞亚群的再生活动
  • 批准号:
    10297361
  • 财政年份:
    2021
  • 资助金额:
    $ 16.89万
  • 项目类别:
Determining how chronic ETOH influences the regenerative activities of hepatocyte subpopulations
确定慢性 ETOH 如何影响肝细胞亚群的再生活动
  • 批准号:
    10458730
  • 财政年份:
    2021
  • 资助金额:
    $ 16.89万
  • 项目类别:
Determining how chronic ETOH influences the regenerative activities of hepatocyte subpopulations
确定慢性 ETOH 如何影响肝细胞亚群的再生活动
  • 批准号:
    10616522
  • 财政年份:
    2021
  • 资助金额:
    $ 16.89万
  • 项目类别:
Investigating imitation SWI chromatin remodeling complexes in mammalian tissue regeneration
研究哺乳动物组织再生中的仿 SWI 染色质重塑复合物
  • 批准号:
    10436812
  • 财政年份:
    2020
  • 资助金额:
    $ 16.89万
  • 项目类别:
Improving hepatocellular carcinoma mouse modeling by understanding the malignant potential and biology of liver cell subpopulations
通过了解肝细胞亚群的恶性潜能和生物学来改善肝细胞癌小鼠模型
  • 批准号:
    10610474
  • 财政年份:
    2020
  • 资助金额:
    $ 16.89万
  • 项目类别:
Mechanism-Driven Virtual Adverse Outcome Pathway Modeling for Hepatotoxicity
机制驱动的肝毒性虚拟不良结果途径建模
  • 批准号:
    10350701
  • 财政年份:
    2020
  • 资助金额:
    $ 16.89万
  • 项目类别:
Improving hepatocellular carcinoma mouse modeling by understanding the malignant potential and biology of liver cell subpopulations
通过了解肝细胞亚群的恶性潜能和生物学来改善肝细胞癌小鼠模型
  • 批准号:
    10172879
  • 财政年份:
    2020
  • 资助金额:
    $ 16.89万
  • 项目类别:
Mechanism-Driven Virtual Adverse Outcome Pathway Modeling for Hepatotoxicity
机制驱动的肝毒性虚拟不良结果途径建模
  • 批准号:
    10166848
  • 财政年份:
    2020
  • 资助金额:
    $ 16.89万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 16.89万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.89万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 16.89万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.89万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 16.89万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.89万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 16.89万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 16.89万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 16.89万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.89万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了