Mechanisms of mechano-chemical rupture of blood clots and thrombi
血凝块和血栓的机械化学破裂机制
基本信息
- 批准号:10165811
- 负责人:
- 金额:$ 63.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectBiocompatible MaterialsBiologicalBiomedical EngineeringBiopolymersBloodBlood CellsBlood PlateletsBlood coagulationBlood flowCardiovascular DiseasesCause of DeathChemicalsClinicalClinical MedicineCoagulation ProcessComplexComputer ModelsComputer SimulationConfocal MicroscopyCytolysisDependenceDiagnosisDiseaseElectron MicroscopyElementsEnzymesErythrocytesEvolutionFiberFibrinFibrinogenFibrinolysisFractureFrustrationGelGleanGoalsGrowthHydrogelsKnowledgeLawsLengthLifeLinkLiquid substanceMachine LearningMapsMeasurementMeasuresMechanical StressMechanicsMethodologyModelingMolecularMolecular StructureOutputPatientsPhysiciansPhysiologicalPlasmaPredispositionPreventionProcessPropertyProphylactic treatmentProteinsResearchResearch ProposalsResistanceResourcesRuptureSpecimenSpectrum AnalysisStressStructural ModelsStructural defectStructureTestingTheoretical StudiesTheoretical modelTherapeutic EmbolizationThermodynamicsThickThrombinThromboembolismThrombosisThrombusTractionWorkbasecrosslinkdensitydesigndisabilityexperimental studyfiber cellfluid flowin silicoin vivoinsightinstrumentationinterdisciplinary approachmaterials sciencemechanical propertiesmodels and simulationmolecular dynamicsmolecular scalemulti-scale modelingnanoscaleneutrophilnovel strategiespredictive modelingpreventresponsesimulationsynergismtheoriesthrombotictoolvenous thromboembolismviscoelasticity
项目摘要
Mechanisms of mechano-chemical rupture of blood clots and thrombi
Prashant K. Purohit, John L. Bassani, Valeri Barsegov and John W. Weisel
The goal of this proposal is to explore and understand the fracture toughness of blood clots and thrombi, thus
providing a mechanistic basis for life-threatening thrombotic embolization. A combination of experiments,
theoretical modeling and computer simulations will reveal how mechanical stresses (due to blood flow) in
synergy with enzymatic lysis induce structural damage from the molecular to continuum scales and affect the
propensity of a clot to embolize. The specific aims of this proposal are: (1) Measure and model fracture
toughness of fibrin gels in quasi-static conditions, (2) Investigate rate dependent dissipative effects on
toughness of fibrin gels, and (3) Study the effects of blood cells, prothrombotic blood composition,
and fibrinolysis on rupture of blood clots. In Specific Aim (SA) 1, we will measure toughness of fibrin clots
and provide a structural basis for rupture at the micron and nanometer scales. In SA2, we will delve into the
thermodynamics and rate-dependence of the fracture of fibrin gels, including fluid flow through pores and fluid
drag on fibrin fibers to capture how energy dissipation increases toughness. In the translational SA3, we will
investigate toughness of physiologically relevant clots with effects of platelets, red blood cells, and neutrophils
in the absence and presence of the physiological fibrinolytic activator (tPA). We will also study the rupture of
clots made from the blood of venous thromboembolism patients to explore the effects of (pro)thrombotic
alterations of blood composition on clot mechanical stability. Our preliminary studies show that i) the toughness
of cross-linked fibrin gels is in the range of those for synthetic hydrogels, ii) the addition of tPA to a crack tip
reduces the loads for crack growth, iii) fibers are aligned and broken along the tensile direction at the crack tip,
and iv) crack propagation results from the rupture of covalent and non-covalent bonds. We also developed v)
dynamic force spectroscopy in silico to mechanically test fibrin fibers and fibrin networks using pulling
simulations and vi) atomic stress approach to map the stress-strain fields using the output from simulations.
We will use continuum and finite element models of swellable biopolymer hydrogels, and statistical mechanical
models for the forced unfolding of fibrin molecules. We will employ multiscale computational modeling based
on Molecular Dynamics simulations of atomic structures of fibrin fibers, and Langevin simulations of fibrin
networks accelerated on Graphics Processing Units. The proposed experiments cover the whole gamut of
macroscopic tensile tests, shear rheometry, electron microscopy and confocal microscopy to visualize and
quantitate the structural alterations of ruptured blood clots. Our experiments and modeling will help us to
understand the mechanisms of thrombotic embolization and will address the clinically important question: why
is there a strong association between clot structure/mechanical properties and cardiovascular diseases? The
new knowledge will also help to design new hydrogel-based biomaterials that are currently at the forefront of
research in mechanics, materials science and bioengineering.
血块和血栓的机械化学破裂机制
Prashant K. Purohit,John L. Bassani,Valeri Barsegov和John W. Weisel
该提议的目的是探索和了解血块和血栓的骨折韧性,从而
为威胁生命的血栓栓塞提供了机械基础。实验的组合,
理论建模和计算机模拟将揭示机械应力(由于血流引起的)
与酶促裂解的协同作用会引起分子至连续体尺度的结构损害,并影响
凝块栓塞的倾向。该提案的具体目的是:(1)测量和模型断裂
纤维蛋白凝胶在准静态条件下的韧性,(2)研究对速率依赖性耗散作用对
纤维蛋白凝胶的韧性,(3)研究血细胞的作用,血栓性血液组成,
和纤维蛋白溶解对血凝块破裂。在特定的目标(SA)1中,我们将测量纤维蛋白血块的韧性
并为微米和纳米尺度上的破裂提供结构性基础。在SA2中,我们将深入研究
纤维蛋白凝胶断裂的热力学和速率依赖性,包括流体流动和流体
拖动纤维蛋白纤维,以捕获能量耗散如何增加韧性。在翻译SA3中,我们将
研究生理上相关的凝块的韧性,血小板,红细胞和中性粒细胞的影响
在不存在和存在生理纤维蛋白水解活化剂(TPA)的情况下。我们还将研究
由静脉血栓栓塞患者的血液制成的血块,以探索(Pro)血栓形成的影响
血液组成对凝块机械稳定性的改变。我们的初步研究表明,我)韧性
交联的纤维蛋白凝胶的范围为合成水凝胶的范围,ii)将TPA添加到裂纹尖端
减少裂纹生长的载荷,iii)纤维在裂纹尖端处的拉伸方向对齐并破裂,
iv)裂纹繁殖是由于共价和非共价键破裂而产生的。我们还开发了v)
硅中的动态力光谱法,使用拉力进行机械测试纤维蛋白纤维和纤维蛋白网络
模拟和VI)原子应力方法使用模拟的输出来绘制应力 - 应变场。
我们将使用膨胀生物聚合物水凝胶的连续性和有限元模型以及统计机械
纤维蛋白分子强迫展开的模型。我们将采用基于多尺度计算建模的
关于纤维蛋白纤维原子结构的分子动力学模拟,以及纤维蛋白的Langevin模拟
网络在图形处理单元上加速。提出的实验涵盖了整个范围
宏观拉伸测试,剪切流变计,电子显微镜和共聚焦显微镜可视化和
定量破裂的血凝块的结构改变。我们的实验和建模将帮助我们
了解血栓栓塞的机制,并将解决临床上重要的问题:为什么
凝块结构/机械性能与心血管疾病之间有很强的关联吗?这
新知识还将有助于设计新的基于水凝胶的生物材料,这些生物材料目前处于
力学,材料科学和生物工程研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prashant Kishore Purohit其他文献
Prashant Kishore Purohit的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prashant Kishore Purohit', 18)}}的其他基金
Mechanisms of mechano-chemical rupture of blood clots and thrombi
血凝块和血栓的机械化学破裂机制
- 批准号:
10411976 - 财政年份:2020
- 资助金额:
$ 63.96万 - 项目类别:
Mechanisms of mechano-chemical rupture of blood clots and thrombi
血凝块和血栓的机械化学破裂机制
- 批准号:
10617840 - 财政年份:2020
- 资助金额:
$ 63.96万 - 项目类别:
Experiment-based multi-scale modeling of the tensile and compressive deformations of fibrin
基于实验的纤维蛋白拉伸和压缩变形的多尺度建模
- 批准号:
9218422 - 财政年份:2017
- 资助金额:
$ 63.96万 - 项目类别:
相似国自然基金
Kartogenin/羟丙基纤维素复合涂层对PET韧带材料生物相容性和腱-骨愈合的影响及机制研究
- 批准号:81601879
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
新型界面微层结构对生物质基高分子复合材料性能影响的研究
- 批准号:51573066
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
钛系生物材料表面微纳结构特征对蛋白质吸附的影响机制研究
- 批准号:51201050
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
仿生矿化涂层对PET韧带材料生物相容性及腱骨愈合的影响
- 批准号:81271958
- 批准年份:2012
- 资助金额:72.0 万元
- 项目类别:面上项目
生物材料对细胞DNA合成及对胶原mRNA基因的影响
- 批准号:39670220
- 批准年份:1996
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 63.96万 - 项目类别:
Biology the initiator: Harnessing Reactive Oxygen Species for Biocompatible Polymerization
生物学引发者:利用活性氧进行生物相容性聚合
- 批准号:
10667740 - 财政年份:2023
- 资助金额:
$ 63.96万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 63.96万 - 项目类别:
Regulation of Intraocular Pressure via a Novel Adjustable Glaucoma Drainage Device
通过新型可调节青光眼引流装置调节眼压
- 批准号:
10735637 - 财政年份:2023
- 资助金额:
$ 63.96万 - 项目类别: