Therapeutic Management of Lineage- and Differentiation-state Plasticity
谱系和分化状态可塑性的治疗管理
基本信息
- 批准号:10166788
- 负责人:
- 金额:$ 40.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAddressAftercareAutomobile DrivingBar CodesBreast Cancer CellBreast Cancer cell lineCell modelCell physiologyCellsCessation of lifeClonal ExpansionClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsCombined Modality TherapyComputer ModelsDataDependenceDiseaseDisease ProgressionDisease ResistanceDrug CombinationsDrug resistanceEpigenetic ProcessEventGeneticGenotypeGoalsHeterogeneityImageImage CytometryIn VitroLibrariesLinkMalignant NeoplasmsMapsMeasuresMediatingMesenchymalMesenchymal DifferentiationMetadataModelingMolecularOncogenicOutcomePathway interactionsPatient-Focused OutcomesPatientsPharmaceutical PreparationsPhenotypePopulationPopulation HeterogeneityProteinsRecurrenceRegulationRegulatory ElementResidual stateResistanceRouteSystems BiologyTestingTherapeuticTimeTreatment EfficacyWorkXenograft procedureanalytical methodbasecancer cellclinically relevantcombinatorialcomputer frameworkdifferential expressiondrug efficacyepigenetic regulationexperimental studyin vivoinhibitor/antagonistlive cell imagingmalignant breast neoplasmmolecular modelingneoplastic cellnovel therapeuticsoutreachpopulation basedpreventresponsesingle-cell RNA sequencingtargeted treatmenttherapy resistanttranscriptome sequencingtreatment responsetriple-negative invasive breast carcinomatumortumor heterogeneity
项目摘要
ABSTRACT – Project 1
Intratumoral heterogeneity is a major cause of therapeutic resistance in breast cancer. Studies have
demonstrated that a subset of cancer cells within a heterogeneous tumor can escape therapy-induced death
due to innate or adaptive resistance, resulting in recurrence, disease progression, and poor patient survival.
Triple negative breast cancer (TNBC) is an aggressive disease characterized by high intratumor heterogeneity
and poor patient outcome. In preliminary experiments, we identified subpopulations of tumor cells in primary
TNBC as well as in basal-like TNBC cell lines that are characterized by differential expression of luminal, basal,
and mesenchymal differentiation-state markers. We have observed that distinct classes of targeted
therapeutics have the capacity to eliminate or enrich specific differentiation-state subpopulations within these
lines, steering heterogeneous cancer cell populations toward increased homogeneity. Importantly, we identified
synergistic combinatorial treatments that targeted either pathway dependencies predicted by master regulator
analysis of residual cells or epigenetic regulators found to contribute to a cell's transition to a resistant state.
The overall goal of this project, therefore, is to understand cell intrinsic regulation of therapeutic response in
phenotypically heterogeneous TNBC in order to develop targeting strategies to kill all co-existing
subpopulations. We focus on phenotypic heterogeneity, as this can represent the combination of genetic and
epigenetic factors, and we will take advantage of clinically relevant therapeutics that drive heterogeneous
populations toward homogeneity. We hypothesize that a systems biology approach of measuring and
computationally modeling the functional pathways underlying phenotypic state changes in response
to state-aggregating therapeutics will reveal common escape routes and regulators of cell plasticity,
which will allow us to predict effective combinatorial therapeutic strategies that eliminate all cancer
subpopulations. We will address this hypothesis by (1) examining and computationally modeling phenotype
state changes in multiple genetically diverse, heterogeneous TNBC cell lines in response to targeted
therapeutics that induce homogeneity using high-content imaging and single cell expression analysis, (2)
determining whether clonal expansion or differentiation state plasticity drives the dynamic phenotype changes
following targeted therapy and modeling the molecular network changes that underlie these transitions, and (3)
determining epigenetic regulation underlying state transitions and developing combinatorial strategies that
overcome therapeutic resistance in heterogeneous TNBC cells in vitro and in vivo. Together, these aims
support our goal to measure and model cell intrinsic responses to clinically relevant targeted therapeutics and
to predict synergistic drug combinations that more effectively control heterogeneous TNBC. Integration of this
work with Projects 2 and 3 in the M2CH-CSBC will allow us to incorporate extrinsic regulators of these intrinsic
mechanisms and to iteratively refine control strategies for this devastating disease.
!
摘要 – 项目 1
瘤内异质性是乳腺癌治疗耐药的主要原因。研究有
证明异质肿瘤内的一部分癌细胞可以逃避治疗引起的死亡
由于先天性或适应性抵抗,导致复发、疾病进展和患者生存率低下。
三阴性乳腺癌(TNBC)是一种侵袭性疾病,其特点是肿瘤内异质性高
和患者预后不佳。在初步实验中,我们鉴定了原代细胞中的肿瘤细胞亚群
TNBC 以及类似基底的 TNBC 细胞系,其特征是腔、基底、
和间充质分化状态标记。我们观察到不同类别的目标
治疗有能力消除或丰富这些特定的分化状态亚群
线,引导异质癌细胞群趋于增加同质性。重要的是,我们确定了
针对主调节器预测的任一途径依赖性的协同组合治疗
对残留细胞或表观遗传调节因子的分析发现有助于细胞向耐药状态的转变。
因此,该项目的总体目标是了解细胞对治疗反应的内在调节
表型异质 TNBC,以制定杀死所有共存的靶向策略
亚人群。我们关注表型异质性,因为这可以代表遗传和
表观遗传因素,我们将利用临床相关的疗法来驱动异质性
人口走向同质化。我们假设一种系统生物学方法可以测量和
对反应中表型状态变化的功能途径进行计算建模
状态聚合疗法将揭示细胞可塑性的常见逃逸途径和调节因子,
这将使我们能够预测消除所有癌症的有效组合治疗策略
亚人群。我们将通过(1)检查和计算表型模型来解决这个假设
多种遗传多样性、异质性 TNBC 细胞系响应靶向药物的状态变化
使用高内涵成像和单细胞表达分析诱导同质性的疗法,(2)
确定克隆扩张或分化状态可塑性是否驱动动态表型变化
进行靶向治疗并对这些转变背后的分子网络变化进行建模,以及 (3)
确定状态转变背后的表观遗传调控并制定组合策略
克服异质 TNBC 细胞在体外和体内的治疗耐药性。这些目标共同实现
支持我们测量和模拟细胞对临床相关靶向治疗的内在反应的目标
预测更有效控制异质 TNBC 的协同药物组合。整合这个
与 M2CH-CSBC 中的项目 2 和 3 合作将使我们能够将这些内在的外在调节器纳入其中
机制并迭代完善针对这种毁灭性疾病的控制策略。
!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROSALIE C SEARS其他文献
ROSALIE C SEARS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROSALIE C SEARS', 18)}}的其他基金
The Role of post-translational activation of Myc in pancreatic cancer
Myc 翻译后激活在胰腺癌中的作用
- 批准号:
9260766 - 财政年份:2015
- 资助金额:
$ 40.73万 - 项目类别:
The Role of post-translational activation of Myc in pancreatic cancer
Myc 翻译后激活在胰腺癌中的作用
- 批准号:
8912231 - 财政年份:2015
- 资助金额:
$ 40.73万 - 项目类别:
c-Myc Phosphorylation Sites Regulate Its Apoptotic and Tumorigenic Potential
c-Myc 磷酸化位点调节其凋亡和致瘤潜力
- 批准号:
7524942 - 财政年份:2008
- 资助金额:
$ 40.73万 - 项目类别:
c-Myc Phosphorylation Sites Regulate Its Apoptotic and Tumorigenic Potential
c-Myc 磷酸化位点调节其凋亡和致瘤潜力
- 批准号:
7642529 - 财政年份:2008
- 资助金额:
$ 40.73万 - 项目类别:
c-Myc Phosphorylation Sites Regulate Its Apoptotic and Tumorigenic Potential
c-Myc 磷酸化位点调节其凋亡和致瘤潜力
- 批准号:
8256669 - 财政年份:2008
- 资助金额:
$ 40.73万 - 项目类别:
c-Myc Phosphorylation Sites Regulate Its Apoptotic and Tumorigenic Potential
c-Myc 磷酸化位点调节其凋亡和致瘤潜力
- 批准号:
7826589 - 财政年份:2008
- 资助金额:
$ 40.73万 - 项目类别:
c-Myc Phosphorylation Sites Regulate Its Apoptotic and Tumorigenic Potential
c-Myc 磷酸化位点调节其凋亡和致瘤潜力
- 批准号:
8055868 - 财政年份:2008
- 资助金额:
$ 40.73万 - 项目类别:
Cellular Mechanisms Controlling Myc Protein Stability
控制 Myc 蛋白稳定性的细胞机制
- 批准号:
7462627 - 财政年份:2003
- 资助金额:
$ 40.73万 - 项目类别:
Cellular Mechanisms Controlling Myc Protein Stability
控制 Myc 蛋白稳定性的细胞机制
- 批准号:
8458583 - 财政年份:2003
- 资助金额:
$ 40.73万 - 项目类别:
Cellular Mechanisms Controlling Myc Protein Stability
控制 Myc 蛋白稳定性的细胞机制
- 批准号:
7093753 - 财政年份:2003
- 资助金额:
$ 40.73万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
Research Grant














{{item.name}}会员




