INTEGRATIVE DATA APPROACHES FOR RESISTANT HYPERTENSION IDENTIFICATION AND PREDICTION
耐药性高血压识别和预测的综合数据方法
基本信息
- 批准号:10166905
- 负责人:
- 金额:$ 11.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdherenceAdultAgeAlgorithmsAmericanAntihypertensive AgentsBig DataBiochemicalBiological MarkersBlack raceBlood PressureCardiovascular systemCessation of lifeCharacteristicsClassificationClinicalClinical DataClinical ResearchComplexCounselingCoupledDataData SetData SourcesDevelopmentDiabetes MellitusDoctor of PharmacyDoctor of PhilosophyDrug PrescriptionsEarly DiagnosisElectronic Health RecordEnvironmentEtiologyFloridaFundingFutureGenomicsGoalsGrantHealthHeart failureHuman GeneticsHypertensionIndividualInvestigationLinkManualsMeasurementMedicaidMedicare/MedicaidMentorsMeta-AnalysisMethodologyMethodsMethylationMyocardial InfarctionOutcomePathway interactionsPatient NoncompliancePatientsPharmaceutical PreparationsPharmacogenomicsPharmacotherapyPopulationPrecision therapeuticsPredictive ValuePrevalencePrognosisRecording of previous eventsRegression AnalysisResearchResearch PersonnelResistant HypertensionRiskRoleSourceStrokeSystemTestingTimeTrainingTreatment ProtocolsUniversitiesValidationWorkalternative treatmentbasebig biomedical datacardiovascular disorder riskcareer developmentclinical decision supportcomputable phenotypesdata integrationdesignexperiencegenomic datahigh riskinnovationlarge datasetsmedication compliancemetabolomicsmultiple data sourcespatient orientedpredictive modelingpredictive testresponsetranscriptomics
项目摘要
PROJECT SUMMARY
This K01 proposal will facilitate my career development and advance my goal of becoming an independent
investigator focused on discovery and prediction of factors associated with cardiovascular disease risk and
drug response. My research will accomplish this through investigations that include biomedical “Big Data” from
multiple sources, such as electronic health record (EHR) based data, claims based data, and genomics and
other `omics data. The objective for this application is to utilize large datasets to identify characteristics
predictive of resistant hypertension (RHTN). RHTN describes a subset of hypertensive (HTN) individuals with
elevated blood pressure (BP) despite use of multiple anti-HTN medications. Based on current estimates of the
prevalence of RHTN among HTN adults, over 12 million Americans could have RHTN. While these individuals'
BP remains uncontrolled, they are at a 27% increased risk for adverse cardiovascular outcomes. The central
hypothesis is that variance in the prevalence of RHTN can be explained by clinical factors, biochemical factors,
`omic factors, and medication adherence. To test the central hypothesis, I will complete the following Specific
Aims: 1) Validate the RHTN computable phenotype within OneFlorida through manual EHR chart review, 2)
Identify characteristics and predictors of RHTN in the real-world population within EHR based data, 3) Estimate
the level of anti-HTN adherence within a real-world RHTN population, and 4) Quantify the variability that
estimated anti-HTN medication adherence explains in predicting RHTN. In order to build on my strong
expertise and background in human genetics and pharmacogenomics, I will also conduct an Exploratory Aim:
Integrate `omics data with EHR based data to characterize `omic signatures of adverse HTN outcomes. I will
utilize data from OneFlorida and ADVANCE, two of the Clinical Data Research Networks within the National
Patient Centered Clinical Research Network or PCORnet, giving me access to longitudinal EHR-based data on
up to ~14 million individuals. The proposed study is significant because it will identify clinical, biochemical,
`omic, and adherence characteristics associated with RHTN, allowing HTN patients with a higher risk for RHTN
or non-adherence to be identified sooner, and targeted to precision treatment regimens. To successfully
conduct this work, I requires specific training in 1) the validation of computable phenotypes, 2) the refinement
of prediction models using large datasets, 3) the complexities associated with integration of data from EHR and
claims based sources, 4) the complexities associated with integration of data form EHR and `omics based
sources, and 5) clinical decision support. This training plan was designed with my strong mentoring team
(William Hogan, MD, MS; Rhonda Cooper-DeHoff, PharmD, MS, George Michailidis, PhD; Dana Crawford,
PhD, and Francois Modave, PhD). Finally, the rich training environment at the University of Florida, coupled
with my previous training and experience, innovative research plan, high-quality training plan, and outstanding
mentoring team give me the highest likelihood of successful transition to research independence.
项目摘要
这份K 01提案将促进我的职业发展,并推进我成为独立工作者的目标。
研究人员专注于发现和预测与心血管疾病风险相关的因素,
药物反应我的研究将通过调查来实现这一点,包括生物医学“大数据”,
多个来源,如基于电子健康记录(EHR)的数据、基于索赔的数据和基因组学,
其他“经济学数据”此应用程序的目标是利用大型数据集来识别特征
难治性高血压(RHTN)的预测。RHTN描述了高血压(HTN)个体的一个子集,
尽管使用多种抗HTN药物,但血压(BP)仍升高。根据目前的估计,
在HTN成人中RHTN的患病率,超过1200万美国人可能患有RHTN。虽然这些人的
血压仍然不受控制,他们患心血管不良后果的风险增加27%。中央
假设RHTN患病率的差异可以通过临床因素、生化因素
经济因素和药物依从性。为了检验中心假设,我将完成以下具体的
目的:1)通过手动EHR图表审查,在OneFlorida中验证RHTN可计算表型,2)
在基于EHR的数据中识别现实世界人群中RHTN的特征和预测因素,3)估计
真实世界RHTN人群中抗HTN依从性的水平,以及4)量化
估计的抗HTN药物依从性解释了预测RHTN。为了建立在我强大的
在人类遗传学和药物基因组学方面的专业知识和背景,我还将进行探索性目标:
将“组学”数据与基于EHR的数据相结合,以表征不良HTN结果的“组学特征”。我会
利用来自OneFlorida和ADVANCE的数据,这两个临床数据研究网络是国家
以患者为中心的临床研究网络或PCORnet,使我能够访问基于EHR的纵向数据,
多达1400万人。这项拟议中的研究意义重大,因为它将确定临床,生化,
与RHTN相关的“组学”和依从性特征,使HTN患者具有更高的RHTN风险
或不依从的情况更快地被发现,并针对精确的治疗方案。成功
进行这项工作,我需要在1)可计算表型的验证,2)
使用大型数据集的预测模型,3)与EHR数据集成相关的复杂性,
基于索赔的来源,4)与EHR和基于“组学”的数据形式集成相关的复杂性
5)临床决策支持。这个培训计划是与我强大的指导团队一起设计的
(William Hogan,医学博士,理学硕士; Rhonda Cooper-DeHoff,药学博士,理学硕士;乔治迈克尔,哲学博士; Dana Crawford,
和Francois Modave,PhD)。最后,佛罗里达大学丰富的培训环境,
凭借我以前的培训和经验,创新的研究计划,高质量的培训计划,以及出色的
指导团队给了我成功过渡到独立研究的最高可能性。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pharmacogenomics in Cardiovascular Diseases.
心血管疾病中的药物基因组学。
- DOI:10.1002/cpz1.189
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:McDonough CW
- 通讯作者:McDonough CW
Translational Informatics Connects Real-World Information to Knowledge in an Increasingly Data-Driven World.
- DOI:10.1002/cpt.1719
- 发表时间:2020-04
- 期刊:
- 影响因子:6.7
- 作者:McDonough CW;Breitenstein MK;Shahin M;Empey PE;Freimuth RR;Li L;Liebman M;Tuteja S
- 通讯作者:Tuteja S
Genome Wide Analysis Approach Suggests Chromosome 2 Locus to be Associated with Thiazide and Thiazide Like-Diuretics Blood Pressure Response.
全基因组分析方法表明 2 号染色体位点与噻嗪类和噻嗪类利尿剂的血压反应相关。
- DOI:10.1038/s41598-019-53345-5
- 发表时间:2019
- 期刊:
- 影响因子:4.6
- 作者:Singh,Sonal;McDonough,CaitrinW;Gong,Yan;Bailey,KentR;Boerwinkle,Eric;Chapman,ArleneB;Gums,JohnG;Turner,StephenT;Cooper-DeHoff,RhondaM;Johnson,JulieA
- 通讯作者:Johnson,JulieA
Characteristics and Predictors of Apparent Treatment-Resistant Hypertension in Real-World Populations Using Electronic Health Record-Based Data.
使用基于电子健康记录的数据,现实世界人群中明显难治性高血压的特征和预测因素。
- DOI:10.1093/ajh/hpad084
- 发表时间:2024
- 期刊:
- 影响因子:3.2
- 作者:Jafari,Eissa;Cooper-DeHoff,RhondaM;Effron,MarkB;Hogan,WilliamR;McDonough,CaitrinW
- 通讯作者:McDonough,CaitrinW
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caitrin W McDonough其他文献
Caitrin W McDonough的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caitrin W McDonough', 18)}}的其他基金
Hypertension Prediction and Identification in All of Us
我们所有人的高血压预测和识别
- 批准号:
10797850 - 财政年份:2023
- 资助金额:
$ 11.9万 - 项目类别:
相似海外基金
Developing a Young Adult-Mediated Intervention to Increase Colorectal Cancer Screening among Rural Screening Age-Eligible Adults
制定年轻人介导的干预措施,以增加农村符合筛查年龄的成年人的结直肠癌筛查
- 批准号:
10653464 - 财政年份:2023
- 资助金额:
$ 11.9万 - 项目类别:
Doctoral Dissertation Research: Estimating adult age-at-death from the pelvis
博士论文研究:从骨盆估算成人死亡年龄
- 批准号:
2316108 - 财政年份:2023
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
Determining age dependent factors driving COVID-19 disease severity using experimental human paediatric and adult models of SARS-CoV-2 infection
使用 SARS-CoV-2 感染的实验性人类儿童和成人模型确定导致 COVID-19 疾病严重程度的年龄依赖因素
- 批准号:
BB/V006738/1 - 财政年份:2020
- 资助金额:
$ 11.9万 - 项目类别:
Research Grant
Transplantation of Adult, Tissue-Specific RPE Stem Cells for Non-exudative Age-related macular degeneration (AMD)
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 (AMD)
- 批准号:
10294664 - 财政年份:2020
- 资助金额:
$ 11.9万 - 项目类别:
Sex differences in the effect of age on episodic memory-related brain function across the adult lifespan
年龄对成人一生中情景记忆相关脑功能影响的性别差异
- 批准号:
422882 - 财政年份:2019
- 资助金额:
$ 11.9万 - 项目类别:
Operating Grants
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
- 批准号:
430871 - 财政年份:2019
- 资助金额:
$ 11.9万 - 项目类别:
Studentship Programs
Transplantation of Adult, Tissue-Specific RPE Stem Cells as Therapy for Non-exudative Age-Related Macular Degeneration AMD
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 AMD
- 批准号:
9811094 - 财政年份:2019
- 资助金额:
$ 11.9万 - 项目类别:
Study of pathogenic mechanism of age-dependent chromosome translocation in adult acute lymphoblastic leukemia
成人急性淋巴细胞白血病年龄依赖性染色体易位发病机制研究
- 批准号:
18K16103 - 财政年份:2018
- 资助金额:
$ 11.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Doctoral Dissertation Research: Literacy Effects on Language Acquisition and Sentence Processing in Adult L1 and School-Age Heritage Speakers of Spanish
博士论文研究:识字对西班牙语成人母语和学龄传统使用者语言习得和句子处理的影响
- 批准号:
1823881 - 财政年份:2018
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
Adult Age-differences in Auditory Selective Attention: The Interplay of Norepinephrine and Rhythmic Neural Activity
成人听觉选择性注意的年龄差异:去甲肾上腺素与节律神经活动的相互作用
- 批准号:
369385245 - 财政年份:2017
- 资助金额:
$ 11.9万 - 项目类别:
Research Grants














{{item.name}}会员




