Novel neural circuit biomarkers of depression response to computer-augmented CBT
计算机增强 CBT 抑郁反应的新型神经回路生物标志物
基本信息
- 批准号:10166929
- 负责人:
- 金额:$ 55.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-05 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAlgorithmsAmbulatory Care FacilitiesAmericanAmygdaloid structureAnteriorAntidepressive AgentsBiological MarkersBrainCaringClinicalClinical ManagementClinical TrialsCognitiveCognitive TherapyComputer ModelsComputersConflict (Psychology)ConsumptionControl GroupsCoping BehaviorDataDepressed moodDiagnosisDiseaseDorsalEmotionalFDA approvedFutureHourImageIndividualInferior frontal gyrusLateralMagnetic Resonance ImagingMajor Depressive DisorderMeasuresMental DepressionNational Institute of Mental HealthOutcomeOutpatientsParticipantPatientsPennsylvaniaPlacebosPopulationPrefrontal CortexProtocols documentationPsychological TestsRandomizedRecoveryResearch PersonnelRestRiskSite-Directed MutagenesisStructureThickThinkingTimeTrainingTreatment EfficacyTreatment outcomeUniversitiesUniversity HospitalsVariantWaiting ListsWorkactive methodbasecingulate cortexclinical decision supportcomputer programcomputerizedcostcost effectiveeffective therapyefficacy testingevidence baseexecutive functionfunctional MRI scanimprovednegative affectneural circuitnovelnovel markerprogramsrecruitreduce symptomsrehearsalresponseskills trainingtreatment effecttreatment response
项目摘要
Every year more than 20% (55 million) of the adult American population suffers from major depression. (MDD).
While effective treatments are available, depression remains under-diagnosed and under-treated, in part due
to cost and availability of treatment. In the current application in response to NIMH NOT-14-007 we propose a
clinical trial to study potential novel biomarkers of depression treatment response rather than to test efficacy of
an efficient, cost-effective form of computer-augmented cognitive behavioral therapy (CCBT) which already
has proven efficacy. We present pilot data supporting CBT-induced improvements in functional connectivity
and task-induced activation in MDD. We also have found in previous work that this model of CCBT, known as
Good Days Ahead (GDA), has efficacy for MDD that is not inferior to conventional individual CBT therapy
across 8 and 16 weeks of treatment, despite reducing average therapist contact from 16 hours to less than 5
hours. We now propose that this new variation of cognitive therapy, which substitutes intensive, computer-
administered skills training for hours of therapist contact, will engage the same brain targets we have
previously seen with CBT. We hypothesize that it is rehearsal time during which an individual actively engages
in corrective skills training that “mends” the brain connectivity and promotes recovery. We will recruit a total of
60 patients with MDD and 40 matched comparison healthy participants from the outpatient clinics of the
Hospitals of the University of Pennsylvania. To take into account the impact of nonspecific factors, half of the
MDD participants will be randomized to receive CCBT immediately after baseline assessments and half will
first receive 8 weeks of Depression Care Management (DCM) (a clinically responsible alternative to a
traditional wait-list control group that includes support and clinical management) before subsequently receiving
CCBT.
Aim 1: Compare baseline resting state functional connectivity and task-induced activity between MDD
and controls. Aim 2: Assess CCBT treatment effects on resting state functional connectivity and task-
induced activation in MDD comparing CCBT-treated participants to DCM –treated participants.
Exploratory Aim: 1a:Predict the effects of baseline imaging measures on treatment outcomes; 1b:
Predict the effects of baseline executive function on treatment outcomes.
每年超过20%(5500万)的美国成年人患有严重抑郁症。(MDD)。
虽然有有效的治疗方法,但抑郁症仍然诊断不足,治疗不足,部分原因是
治疗的成本和可用性。在响应于NIMH NOT-14-007的当前申请中,我们提出了一种方法,
研究抑郁症治疗反应的潜在新生物标志物的临床试验,而不是测试
一种有效的,具有成本效益的计算机增强认知行为疗法(CCBT),
已被证明有效。我们目前的试点数据支持CBT诱导的功能连接的改善
和任务诱发的激活。我们还发现,在以前的工作中,这种模型的CCBT,称为
Good Days Ahead(GDA)对MDD的疗效不亚于传统的个体CBT疗法
在8周和16周的治疗中,尽管平均治疗师接触时间从16小时减少到不到5小时,
小时我们现在提出,这种新的认知疗法,它取代了密集的,计算机-
管理技能培训的治疗师接触小时,将从事相同的大脑目标,我们有
以前见过CBT。我们假设这是一个人积极参与的排练时间
在矫正技能训练,“修补”大脑连接和促进恢复。我们将招募总共
60例MDD患者和40例匹配的对照健康受试者来自
宾夕法尼亚大学附属医院。考虑到非特异性因素的影响,
MDD受试者将在基线评估后立即随机接受CCBT,一半将接受CCBT。
首先接受8周的抑郁症护理管理(DCM)(一种临床上负责的替代治疗),
传统的等待名单对照组,包括支持和临床管理),
CCBT。
目的1:比较MDD患者的基线静息状态功能连接和任务诱导活动
和控制。目标2:评估CCBT治疗对静息状态功能连接和任务的影响-
比较CCBT治疗的参与者与DCM治疗的参与者在MDD中诱导的激活。
探索性目的:1a:预测基线影像学指标对治疗结局的影响; 1b:
预测基线执行功能对治疗结果的影响。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YVETTE I SHELINE其他文献
YVETTE I SHELINE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YVETTE I SHELINE', 18)}}的其他基金
3/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
3/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10670909 - 财政年份:2022
- 资助金额:
$ 55.06万 - 项目类别:
Reducing neural perseveration through closed loop real time fMRI neurofeedback to alleviate depressive symptoms
通过闭环实时功能磁共振成像神经反馈减少神经持久性,以缓解抑郁症状
- 批准号:
10539326 - 财政年份:2021
- 资助金额:
$ 55.06万 - 项目类别:
Reducing neural perseveration through closed loop real time fMRI neurofeedback to alleviate depressive symptoms
通过闭环实时功能磁共振成像神经反馈减少神经持久性,以缓解抑郁症状
- 批准号:
10356604 - 财政年份:2021
- 资助金额:
$ 55.06万 - 项目类别:
Novel neural circuit biomarkers of depression response to computer-augmented CBT
计算机增强 CBT 抑郁反应的新型神经回路生物标志物
- 批准号:
9908160 - 财政年份:2017
- 资助金额:
$ 55.06万 - 项目类别:
Integrative Training in the Neurocircuitry of Affective Disorders
情感障碍神经回路的综合训练
- 批准号:
9917853 - 财政年份:2016
- 资助金额:
$ 55.06万 - 项目类别:
Citalopram Decreases CSF AB: A Randomized Dose Finding Trial
西酞普兰减少 CSF AB:随机剂量探索试验
- 批准号:
8811213 - 财政年份:2014
- 资助金额:
$ 55.06万 - 项目类别:
Citalopram Decreases CSF AB: A Randomized Dose Finding Trial
西酞普兰减少 CSF AB:随机剂量探索试验
- 批准号:
8893854 - 财政年份:2014
- 资助金额:
$ 55.06万 - 项目类别:
Citalopram Decreases CSF AB: A Randomized Dose Finding Trial
西酞普兰减少 CSF AB:随机剂量探索试验
- 批准号:
8701208 - 财政年份:2014
- 资助金额:
$ 55.06万 - 项目类别:
STRESS AND INFLAMMATION IN THE PATHOPHYSIOLOGY OF LATE-LIFE DEPRESSION
晚年抑郁症病理生理学中的压力和炎症
- 批准号:
8499914 - 财政年份:2013
- 资助金额:
$ 55.06万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 55.06万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 55.06万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 55.06万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 55.06万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 55.06万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 55.06万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 55.06万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 55.06万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 55.06万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 55.06万 - 项目类别:
Continuing Grant