Molecular physiology of intracellular InsP3R and MCU ion channels
细胞内 InsP3R 和 MCU 离子通道的分子生理学
基本信息
- 批准号:10170553
- 负责人:
- 金额:$ 44.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAgonistAlzheimer&aposs DiseaseBehaviorBiochemicalBiophysicsCell physiologyCellsCellular Metabolic ProcessCessation of lifeCitric Acid CycleComplexCryoelectron MicroscopyDiseaseElectronsElectrophysiology (science)Endoplasmic ReticulumEnvironmentGoalsHealthHeartIndividualInner mitochondrial membraneInositolIon ChannelIonsKineticsLifeMalignant NeoplasmsMediatingMembraneMicroscopicMitochondriaMitochondrial ProteinsMolecularOutcomeOxidative PhosphorylationOxidoreductasePathway interactionsPhysiologicalPhysiological ProcessesPhysiologyPlayPositioning AttributeProductionPropertyProteinsRegulationRoleSignal PathwaySignal TransductionStructureSystemTechniquesbiophysical techniquescancer cellcell typefamilial Alzheimer diseaseinsightpatch clampreceptortripolyphosphateuptake
项目摘要
SUMMARY
Modulation of the cytoplasmic concentration of Ca2+ ([Ca2+]i) by inositol trisphosphate (InsP3)-triggered release
of Ca2+ from the endoplasmic reticulum (ER) is a ubiquitous signaling system that regulates numerous cell
physiological processes. InsP3-mediated [Ca2+]i signals are manifested as repetitive spikes or oscillations, and
they can be highly localized or propagate to provide signals to discrete parts of the cell. At the heart of this
complex signaling system is the InsP3R ion channel. We have provided rigorous understanding of the ion-
channel properties of the InsP3R, by studying the channel using powerful quantitative single-channel patch-
clamp electrophysiology of native ER membranes, a technique that we pioneered; how those properties are
regulated by physiological agonists and protein interactions; and how changes in these properties are reflected
in physiological outcomes. An important physiological target of InsP3R-mediated Ca2+ signals are mitochondria.
InsP3R channels play a fundamental role in the regulation of cell metabolism, primarily by supplying released
Ca2+ to mitochondria to stimulate TCA-cycle dehydrogenases to promote oxidative phosphorylation (OXPHOS)
and ATP production. We discovered that low-level constitutive InsP3R-mediated Ca2+ release to mitochondria
is essential for maintaining basal levels of OXPHOS and ATP production in most cell types, and that cancer
cells have a particular reliance on this pathway for their survival. The primary pathway for mitochondrial Ca2+
uptake is the mitochondrial Ca2+ uniporter (MCU), a Ca2+-selective ion channel in the inner mitochondrial
membrane (IMM). As for the InsP3R, we have employed biochemical and powerful biophysical approaches to
understand the ion-channel properties of MCU, including patch-clamp electrophysiology of MCU Ca2+ currents
in individual mitoplasts. Our overarching effort has been to quantitatively understand the molecular
physiologies of the InsP3R and MCU channels whose integrated activities control cellular physiology and life
and death decisions. Recently, cryo-electron microscopic (cryo-EM) structures of both the InsP3R and MCU
have been solved. Because of our exertise in the biophysics and molecular physiology of these intracellular ion
channels, we are uniquely positioned to exploit this new information to address important questions regarding
the molecular mechanisms of ion permeation and channel gating and their regulation of both Ca2+ ion
channels. Our goals are to understanding the molecular mechanisms of InsP3R channel gating regulation, to
gain fundamental new insights into the molecular mechanisms of MCU channel ion permeation and gating
regulation, including by interacting mitochondrial proteins, and to exploit the information gained from the first
two goals to provide quantitative insights into ER-to-mitochondrial Ca2+ transfer. Because of the fundamental
reliance of cancer cells on this signaling system and its role in familial Alzheimer's disease, we expect that
these studies will provide new and critical quantitative insights into a signaling pathway that is important in
many cell physiological processes.
摘要
三磷酸肌醇(InsP3)触发释放对胞浆内钙离子浓度([Ca2+]i)的调节作用
内质网钙离子是一种无处不在的信号系统,调节着众多细胞
生理过程。InsP3介导的[钙]i信号表现为重复的尖峰或振荡,以及
它们可以高度局部化或传播,以向细胞的离散部分提供信号。在这件事的核心
复杂的信号系统是InsP3R离子通道。我们提供了对离子的严格理解-
InsP3R的通道特性,通过使用强大的定量单通道贴片来研究通道-
我们首创的一项技术--天然ER膜的钳制电生理学;这些特性如何
受生理激动剂和蛋白质相互作用的调节;以及这些特性的变化是如何反映的
在生理结果上。InsP3R介导的钙信号的一个重要生理靶点是线粒体。
InsP3R通道在调节细胞新陈代谢中起着基础性作用,主要是通过提供释放的
线粒体钙离子激活TCA循环脱氢酶促进氧化磷酸化(OXPHOS)
和三磷酸腺苷生产。我们发现低水平的结构性InsP3R介导的钙离子释放到线粒体
在大多数细胞类型中维持OXPHOS和ATP产生的基础水平是必不可少的,而癌症
细胞的生存特别依赖于这一途径。线粒体钙离子的主要途径
摄取是线粒体钙离子单一转运体(MCU),这是线粒体内部的一种钙选择离子通道
膜(IMM)。至于InsP3R,我们使用了生化和强大的生物物理方法来
了解MCU的离子通道特性,包括MCU钙电流的膜片钳电生理
在单个有丝分裂体中。我们最主要的努力是定量地了解分子
InsP3R和MCU通道的生理学,其综合活动控制细胞的生理和生命
以及死亡的决定。最近,InsP3R和MCU的冷冻电子显微镜(Cryo-EM)结构
都已经解决了。因为我们在这些细胞内离子的生物物理和分子生理学方面的努力
渠道,我们处于独特的地位,可以利用这些新信息来解决以下重要问题
离子渗透和通道门控的分子机制及其对钙离子的调节
频道。我们的目标是了解InsP3R通道门控调节的分子机制,以
对MCU通道离子渗透和门控的分子机制有了新的认识
调节,包括通过相互作用线粒体蛋白质,并利用从第一个获得的信息
提供对内质网到线粒体钙离子转移的定量洞察的两个目标。因为基本的
癌细胞对这一信号系统的依赖及其在家族性阿尔茨海默病中的作用,我们预计
这些研究将提供对信号通路的新的和关键的定量见解,该信号通路在
许多细胞的生理过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Kevin FOSKETT其他文献
James Kevin FOSKETT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Kevin FOSKETT', 18)}}的其他基金
Endoplasmic Reticulum-to-Mitochondria Calcium Transfer in Pancreatic Cancer Development, Metastasis, and Treatment
胰腺癌发生、转移和治疗中的内质网至线粒体钙转移
- 批准号:
10679078 - 财政年份:2021
- 资助金额:
$ 44.66万 - 项目类别:
Endoplasmic Reticulum-to-Mitochondria Calcium Transfer in Pancreatic Cancer Development, Metastasis, and Treatment
胰腺癌发生、转移和治疗中的内质网至线粒体钙转移
- 批准号:
10443604 - 财政年份:2021
- 资助金额:
$ 44.66万 - 项目类别:
Molecular physiology of intracellular InsP3R and MCU ion channels
细胞内 InsP3R 和 MCU 离子通道的分子生理学
- 批准号:
10614508 - 财政年份:2021
- 资助金额:
$ 44.66万 - 项目类别:
Endoplasmic Reticulum-to-Mitochondria Calcium Transfer in Pancreatic Cancer Development, Metastasis, and Treatment
胰腺癌发生、转移和治疗中的内质网至线粒体钙转移
- 批准号:
10208636 - 财政年份:2021
- 资助金额:
$ 44.66万 - 项目类别:
Molecular physiology of intracellular InsP3R and MCU ion channels
细胞内 InsP3R 和 MCU 离子通道的分子生理学
- 批准号:
10398929 - 财政年份:2021
- 资助金额:
$ 44.66万 - 项目类别:
Identification of CALHM proteins as ion channels
CALHM 蛋白作为离子通道的鉴定
- 批准号:
10044119 - 财政年份:2020
- 资助金额:
$ 44.66万 - 项目类别:
Role of CALHM1 ion channel in taste transduction
CALHM1离子通道在味觉传导中的作用
- 批准号:
8650279 - 财政年份:2013
- 资助金额:
$ 44.66万 - 项目类别:
相似国自然基金
Agonist-GPR119-Gs复合物的结构生物学研究
- 批准号:32000851
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
- 批准号:
24K12256 - 财政年份:2024
- 资助金额:
$ 44.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AHR agonistによるSLE皮疹の新たな治療薬の開発
使用 AHR 激动剂开发治疗 SLE 皮疹的新疗法
- 批准号:
24K19176 - 财政年份:2024
- 资助金额:
$ 44.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
- 批准号:
10578068 - 财政年份:2023
- 资助金额:
$ 44.66万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 44.66万 - 项目类别:
Targeting breast cancer microenvironment with small molecule agonist of relaxin receptor
用松弛素受体小分子激动剂靶向乳腺癌微环境
- 批准号:
10650593 - 财政年份:2023
- 资助金额:
$ 44.66万 - 项目类别:
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
- 批准号:
10649275 - 财政年份:2023
- 资助金额:
$ 44.66万 - 项目类别:
A randomized double-blind placebo controlled Phase 1 SAD study in male and female healthy volunteers to assess safety, pharmacokinetics, and transient biomarker changes by the ABCA1 agonist CS6253
在男性和女性健康志愿者中进行的一项随机双盲安慰剂对照 1 期 SAD 研究,旨在评估 ABCA1 激动剂 CS6253 的安全性、药代动力学和短暂生物标志物变化
- 批准号:
10734158 - 财政年份:2023
- 资助金额:
$ 44.66万 - 项目类别:
Investigating mechanisms underpinning outcomes in people on opioid agonist treatment for OUD: Disentangling sleep and circadian rhythm influences on craving and emotion regulation
研究阿片类激动剂治疗 OUD 患者结果的机制:解开睡眠和昼夜节律对渴望和情绪调节的影响
- 批准号:
10784209 - 财政年份:2023
- 资助金额:
$ 44.66万 - 项目类别:
A novel nanobody-based agonist-redirected checkpoint (ARC) molecule, aPD1-Fc-OX40L, for cancer immunotherapy
一种基于纳米抗体的新型激动剂重定向检查点 (ARC) 分子 aPD1-Fc-OX40L,用于癌症免疫治疗
- 批准号:
10580259 - 财政年份:2023
- 资助金额:
$ 44.66万 - 项目类别:
Identification and characterization of a plant growth promoter from wild plants: is this a novel plant hormone agonist?
野生植物中植物生长促进剂的鉴定和表征:这是一种新型植物激素激动剂吗?
- 批准号:
23K05057 - 财政年份:2023
- 资助金额:
$ 44.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




