Molecular physiology of intracellular InsP3R and MCU ion channels
细胞内 InsP3R 和 MCU 离子通道的分子生理学
基本信息
- 批准号:10170553
- 负责人:
- 金额:$ 44.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAgonistAlzheimer&aposs DiseaseBehaviorBiochemicalBiophysicsCell physiologyCellsCellular Metabolic ProcessCessation of lifeCitric Acid CycleComplexCryoelectron MicroscopyDiseaseElectronsElectrophysiology (science)Endoplasmic ReticulumEnvironmentGoalsHealthHeartIndividualInner mitochondrial membraneInositolIon ChannelIonsKineticsLifeMalignant NeoplasmsMediatingMembraneMicroscopicMitochondriaMitochondrial ProteinsMolecularOutcomeOxidative PhosphorylationOxidoreductasePathway interactionsPhysiologicalPhysiological ProcessesPhysiologyPlayPositioning AttributeProductionPropertyProteinsRegulationRoleSignal PathwaySignal TransductionStructureSystemTechniquesbiophysical techniquescancer cellcell typefamilial Alzheimer diseaseinsightpatch clampreceptortripolyphosphateuptake
项目摘要
SUMMARY
Modulation of the cytoplasmic concentration of Ca2+ ([Ca2+]i) by inositol trisphosphate (InsP3)-triggered release
of Ca2+ from the endoplasmic reticulum (ER) is a ubiquitous signaling system that regulates numerous cell
physiological processes. InsP3-mediated [Ca2+]i signals are manifested as repetitive spikes or oscillations, and
they can be highly localized or propagate to provide signals to discrete parts of the cell. At the heart of this
complex signaling system is the InsP3R ion channel. We have provided rigorous understanding of the ion-
channel properties of the InsP3R, by studying the channel using powerful quantitative single-channel patch-
clamp electrophysiology of native ER membranes, a technique that we pioneered; how those properties are
regulated by physiological agonists and protein interactions; and how changes in these properties are reflected
in physiological outcomes. An important physiological target of InsP3R-mediated Ca2+ signals are mitochondria.
InsP3R channels play a fundamental role in the regulation of cell metabolism, primarily by supplying released
Ca2+ to mitochondria to stimulate TCA-cycle dehydrogenases to promote oxidative phosphorylation (OXPHOS)
and ATP production. We discovered that low-level constitutive InsP3R-mediated Ca2+ release to mitochondria
is essential for maintaining basal levels of OXPHOS and ATP production in most cell types, and that cancer
cells have a particular reliance on this pathway for their survival. The primary pathway for mitochondrial Ca2+
uptake is the mitochondrial Ca2+ uniporter (MCU), a Ca2+-selective ion channel in the inner mitochondrial
membrane (IMM). As for the InsP3R, we have employed biochemical and powerful biophysical approaches to
understand the ion-channel properties of MCU, including patch-clamp electrophysiology of MCU Ca2+ currents
in individual mitoplasts. Our overarching effort has been to quantitatively understand the molecular
physiologies of the InsP3R and MCU channels whose integrated activities control cellular physiology and life
and death decisions. Recently, cryo-electron microscopic (cryo-EM) structures of both the InsP3R and MCU
have been solved. Because of our exertise in the biophysics and molecular physiology of these intracellular ion
channels, we are uniquely positioned to exploit this new information to address important questions regarding
the molecular mechanisms of ion permeation and channel gating and their regulation of both Ca2+ ion
channels. Our goals are to understanding the molecular mechanisms of InsP3R channel gating regulation, to
gain fundamental new insights into the molecular mechanisms of MCU channel ion permeation and gating
regulation, including by interacting mitochondrial proteins, and to exploit the information gained from the first
two goals to provide quantitative insights into ER-to-mitochondrial Ca2+ transfer. Because of the fundamental
reliance of cancer cells on this signaling system and its role in familial Alzheimer's disease, we expect that
these studies will provide new and critical quantitative insights into a signaling pathway that is important in
many cell physiological processes.
概括
肌醇三磷酸(INSP3)触发的释放的Ca2+([Ca2+] i)的细胞质浓度的调节
来自内质网(ER)的Ca2+是一个无处不在的信号系统,可调节众多细胞
生理过程。 INSP3介导的[Ca2+] I信号表现为重复的尖峰或振荡,并且
它们可以高度局部或传播以提供信号以离散细胞的离散部分。核心
复杂的信号系统是INSP3R离子通道。我们已经对离子提供了严格的理解 -
INSP3R的通道特性,通过使用强大的定量单通道贴片研究通道 -
天然ER膜的夹具电生理学,这是我们开创的技术;这些属性是如何
由生理激动剂和蛋白质相互作用调节;以及如何反映这些属性的变化
在生理结果中。 INSP3R介导的Ca2+信号的重要生理靶标是线粒体。
INSP3R通道在细胞代谢的调节中起着基本作用,主要是通过供应释放
Ca2+到线粒体以刺激TCA周期脱氢酶以促进氧化磷酸化(OXPHOS)
和ATP生产。我们发现低级构型INSP3R介导的Ca2+释放到线粒体
对于在大多数细胞类型中维持基底水平的OXPHOS和ATP产生至关重要,并且癌症至关重要
细胞特别依赖这种途径的生存。线粒体Ca2+的主要途径
摄取是线粒体Ca2+ Uniporter(MCU),这是内部线粒体中的Ca2+选择性离子通道
膜(IMM)。至于insp3r,我们采用了生化和强大的生物物理方法
了解MCU的离子通道特性,包括MCU CA2+电流的贴片钳电生理学
在单个线粒体中。我们的总体努力是定量了解分子
INSP3R和MCU通道的生理学,其整合活动控制细胞生理和生命
和死亡决定。最近,INSP3R和MCU的冷冻电子显微镜(Cryo-EM)结构
已解决。因为我们在这些细胞内离子的生物物理学和分子生理中发挥了作用
渠道,我们唯一地定位了这些新信息,以解决有关的重要问题
离子渗透和通道门控的分子机制及其对Ca2+离子的调节
频道。我们的目标是了解INSP3R通道门控调节的分子机制,
获得对MCU通道离子渗透和门控的分子机制的基本新见解
调节,包括通过相互作用的线粒体蛋白,并利用从第一次获得的信息
两个目标是提供对ER到线粒体Ca2+转移的定量见解。由于基本
依赖癌细胞对该信号系统及其在家族性阿尔茨海默氏病中的作用,我们预计
这些研究将为信号传导途径提供新的和关键的定量见解
许多细胞生理过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Kevin FOSKETT其他文献
James Kevin FOSKETT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Kevin FOSKETT', 18)}}的其他基金
Endoplasmic Reticulum-to-Mitochondria Calcium Transfer in Pancreatic Cancer Development, Metastasis, and Treatment
胰腺癌发生、转移和治疗中的内质网至线粒体钙转移
- 批准号:
10679078 - 财政年份:2021
- 资助金额:
$ 44.66万 - 项目类别:
Endoplasmic Reticulum-to-Mitochondria Calcium Transfer in Pancreatic Cancer Development, Metastasis, and Treatment
胰腺癌发生、转移和治疗中的内质网至线粒体钙转移
- 批准号:
10443604 - 财政年份:2021
- 资助金额:
$ 44.66万 - 项目类别:
Molecular physiology of intracellular InsP3R and MCU ion channels
细胞内 InsP3R 和 MCU 离子通道的分子生理学
- 批准号:
10614508 - 财政年份:2021
- 资助金额:
$ 44.66万 - 项目类别:
Endoplasmic Reticulum-to-Mitochondria Calcium Transfer in Pancreatic Cancer Development, Metastasis, and Treatment
胰腺癌发生、转移和治疗中的内质网至线粒体钙转移
- 批准号:
10208636 - 财政年份:2021
- 资助金额:
$ 44.66万 - 项目类别:
Molecular physiology of intracellular InsP3R and MCU ion channels
细胞内 InsP3R 和 MCU 离子通道的分子生理学
- 批准号:
10398929 - 财政年份:2021
- 资助金额:
$ 44.66万 - 项目类别:
Identification of CALHM proteins as ion channels
CALHM 蛋白作为离子通道的鉴定
- 批准号:
10044119 - 财政年份:2020
- 资助金额:
$ 44.66万 - 项目类别:
Role of CALHM1 ion channel in taste transduction
CALHM1离子通道在味觉传导中的作用
- 批准号:
8650279 - 财政年份:2013
- 资助金额:
$ 44.66万 - 项目类别:
相似国自然基金
新型IL2Rβγ激动剂逐级控释联合放疗对抗三阴性乳腺癌的作用及机制研究
- 批准号:82303819
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载自组装型非核苷类STING激动剂的亚精胺水凝胶用于抗肿瘤免疫治疗及机制研究
- 批准号:82303561
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向SIRT3小分子激动剂调控三阴性乳腺癌细胞自噬和免疫微环境的机制研究
- 批准号:82373193
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于OSMAC-GNPS分析策略的蚂蚱内生真菌Aspergillus sp.中新颖泛PPAR激动剂的发现及治疗NASH研究
- 批准号:82304340
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探究FSP1激动剂在治疗肾缺血再灌注损伤中的分子机理与应用
- 批准号:82304600
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A neurobiological investigation of cannabis use and misuse in Veterans
退伍军人大麻使用和滥用的神经生物学调查
- 批准号:
10588526 - 财政年份:2023
- 资助金额:
$ 44.66万 - 项目类别:
Stabilizing the tripartite synaptic complex following TBI
TBI 后稳定三方突触复合体
- 批准号:
10844877 - 财政年份:2023
- 资助金额:
$ 44.66万 - 项目类别:
The role of PPARγ in astrocyte pathobiology after exposure to repetitive mild traumatic brain injury
PPARγ 在重复性轻度脑外伤后星形胶质细胞病理学中的作用
- 批准号:
10739968 - 财政年份:2023
- 资助金额:
$ 44.66万 - 项目类别:
Integrin regulation of vascular function in Alzheimer's disease
整合素对阿尔茨海默病血管功能的调节
- 批准号:
10901016 - 财政年份:2023
- 资助金额:
$ 44.66万 - 项目类别:
Structural and Allosteric Mechanisms of mGluR Activation
mGluR 激活的结构和变构机制
- 批准号:
10679316 - 财政年份:2023
- 资助金额:
$ 44.66万 - 项目类别: