A Machine Learning Alternative to Beamforming to Improve Ultrasound Image Quality for Interventional Access to the Kidney

波束成形的机器学习替代方案可提高肾脏介入治疗的超声图像质量

基本信息

  • 批准号:
    10170765
  • 负责人:
  • 金额:
    $ 23.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-12-07 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

Project Summary Despite the widespread prevalence of ultrasound imaging in hospitals today, the clinical utility of ultrasound guidance is severely hampered by clutter and reverberation artifacts that obscure structures of interest and com- plicate anatomical measurements. Clutter is particularly problematic in overweight and obese individuals, who account for 78.6 million adults and 12.8 million children in North America. Similarly, interventional procedures of- ten require insertion of one or more metal tools, which generate reverberation artifacts that obfuscate instrument location, orientation, and geometry, while obscuring nearby tissues, thus additionally hampering ultrasound im- age quality. Although artifacts are problematic, ultrasound continues to persist primarily because of its greatest strengths (i.e., mobility, cost, non-ionizing radiation, real-time visualization, and multiplanar views) in comparison to existing image-guidance options, but it would be significantly more useful without problematic artifacts. Our long-term project goal is to use state-of-the-art machine learning techniques to provide interventional radiologists with artifact-free ultrasound-based images. We will initially develop a new framework alternative to the ultrasound beamforming process that removes needle tip reverberations and acoustic clutter caused by multipath scattering in near-field tissues when guiding needles to the kidney to enable removal of painful kidney stones. Our first aim will test convolutional neural networks (CNNs) that input raw channel data and output human readable images with no artifacts caused by multipath scattering and reverberations. A secondary goal of the CNNs is to learn the minimum number of parameters required to create these new CNN-based images. Our second aim will validate the trained algorithms with ultrasound data from experimental phantom and ex vivo tissue. Our third aim will extend our evaluation to ultrasound images of in vivo porcine kidneys. This work is the first to propose bypassing the entire beamforming process and replacing it with machine learning and computer vision techniques to remove traditionally problematic noise artifacts and create a fundamentally new type of artifact-free, high-contrast, high-resolution, ultrasound-based image for guiding interventional procedures. This work combines the expertise of an imaging scientist, a computer scientist, and an interventional ra- diologist to explore an untapped, understudied area that is only recently made feasible through improvements in computing power, advances in computer vision capabilities, and new knowledge about dominant sources of image degradation. Translation to in vivo cases is enabled by our clinical collaboration with the Department of Radiology at the Johns Hopkins Hospital. With support from the NIH Trailblazer Award, our team will be the first to develop these tools and capabilities to eliminate noise artifacts in interventional ultrasound, opening the door to a new paradigm in ultrasound image formation, which will directly benefit millions of patients with clearer, easier-to-interpret ultrasound images. Subsequent R01 funding will customize our innovation to addi- tional application-specific ultrasound procedures (e.g., breast biopsies, cancer detection, autonomous surgery).
项目总结

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep Learning to Obtain Simultaneous Image and Segmentation Outputs From a Single Input of Raw Ultrasound Channel Data.
The Generalized Contrast-to-Noise Ratio: A Formal Definition for Lesion Detectability.
CohereNet: A Deep Learning Architecture for Ultrasound Spatial Correlation Estimation and Coherence-Based Beamforming.
Detection of COVID-19 features in lung ultrasound images using deep neural networks.
使用深度神经网络检测肺部超声图像中的 COVID-19 特征。
  • DOI:
    10.1038/s43856-024-00463-5
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhao,Lingyi;Fong,TiffanyClair;Bell,MuyinatuALediju
  • 通讯作者:
    Bell,MuyinatuALediju
Deep Learning for Ultrasound Image Formation: CUBDL Evaluation Framework and Open Datasets.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Muyinatu A. Lediju Bell其他文献

Overfit detection method for deep neural networks trained to beamform ultrasound images
用于训练以对超声图像进行波束形成的深度神经网络的过拟合检测方法
  • DOI:
    10.1016/j.ultras.2024.107562
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Jiaxin Zhang;Muyinatu A. Lediju Bell
  • 通讯作者:
    Muyinatu A. Lediju Bell
Deep Learning-Based Displacement Tracking for Post-Stroke Myofascial Shear Strain Quantification
基于深度学习的位移跟踪,用于中风后肌筋膜剪切应变量化
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Md Ashikuzzaman;Jonny Huang;Steve Bonwit;Azin Etemadimanesh;Preeti Raghavan;Muyinatu A. Lediju Bell
  • 通讯作者:
    Muyinatu A. Lediju Bell
Mitigating skin tone bias in linear array emin vivo/em photoacoustic imaging with short-lag spatial coherence beamforming
利用短滞后空间相干波束形成减轻线性阵列体内/体外光声成像中的肤色偏差
  • DOI:
    10.1016/j.pacs.2023.100555
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
    6.800
  • 作者:
    Guilherme S.P. Fernandes;João H. Uliana;Luciano Bachmann;Antonio A.O. Carneiro;Muyinatu A. Lediju Bell;Theo Z. Pavan
  • 通讯作者:
    Theo Z. Pavan

Muyinatu A. Lediju Bell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Muyinatu A. Lediju Bell', 18)}}的其他基金

Photoacoustic Image Guidance of Hysterectomies
子宫切除术的光声图像指导
  • 批准号:
    10586827
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
Minimizing Uncertainty in Breast Ultrasound Imaging with Real-Time Coherence-Based Beamforming
通过基于实时相干的波束形成最大限度地减少乳房超声成像的不确定性
  • 批准号:
    10417922
  • 财政年份:
    2022
  • 资助金额:
    $ 23.5万
  • 项目类别:
Minimizing Uncertainty in Breast Ultrasound Imaging with Real-Time Coherence-Based Beamforming
通过基于实时相干的波束形成最大限度地减少乳房超声成像的不确定性
  • 批准号:
    10679017
  • 财政年份:
    2022
  • 资助金额:
    $ 23.5万
  • 项目类别:
A Machine Learning Alternative to Beamforming to Improve Ultrasound Image Quality for Interventional Access to the Kidney
波束成形的机器学习替代方案可提高肾脏介入治疗的超声图像质量
  • 批准号:
    9913520
  • 财政年份:
    2018
  • 资助金额:
    $ 23.5万
  • 项目类别:
Coherence-Based Photoacoustic Image Guidance of Transsphenoidal Surgeries
基于相干性的光声图像引导经蝶手术
  • 批准号:
    8891530
  • 财政年份:
    2015
  • 资助金额:
    $ 23.5万
  • 项目类别:
Coherence-Based Photoacoustic Image Guidance of Transsphenoidal Surgeries
基于相干性的光声图像引导经蝶手术
  • 批准号:
    9043878
  • 财政年份:
    2015
  • 资助金额:
    $ 23.5万
  • 项目类别:

相似海外基金

Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
  • 批准号:
    10078324
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
  • 批准号:
    2308300
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
  • 批准号:
    10033989
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
  • 批准号:
    10602958
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
  • 批准号:
    2889921
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
  • 批准号:
    DGECR-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了