Coherence-Based Photoacoustic Image Guidance of Transsphenoidal Surgeries
基于相干性的光声图像引导经蝶手术
基本信息
- 批准号:8891530
- 负责人:
- 金额:$ 8.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAnatomyAnterior naresArteriesAwardBase of the BrainBlindnessBloodBlood VesselsCadaverCaliberCarotid ArteriesCarotid Artery InjuriesCephalicCessation of lifeClinicalClinical ResearchComplicationCuretteDataDetectionDevelopmentDiagnosisDiagnosticDistantEmployee StrikesEngineeringEquipmentExcisionFosteringHeadHealthHemorrhageHormonalHospitalsHumanImageImage AnalysisImageryImaging technologyImplantInjuryInstitutionKnowledgeLasersLeadLifeLightMagnetic Resonance AngiographyMagnetic Resonance ImagingMechanicsMedical ImagingMentorsMentorshipMetalsMethodsModelingNasal cavityNasal septum structureNerveObstructionOccupationsOperative Surgical ProceduresOpticsPatientsPenetrationPerformancePhasePhysicsPhysiologic pulsePilot ProjectsPituitary GlandPituitary NeoplasmsProceduresRadiationResearchResearch PersonnelResectedRiskSafetySideSignal TransductionSourceSpeedSphenoid bone structureSphenoidal sinusStrokeSystemTemporal bone structureTestingTimeTissuesTrainingTransducersUltrasonic TransducerUltrasonographyUnited StatesUniversitiesValidationVariantWorkabsorptionbaseblood vessel visualizationbonecareer developmentclinical applicationcraniumdesignexperienceimage guidedimaging modalityimaging systemimprovedin vivolight scatteringminimally invasivenanosecondneurosurgerynoveloperationoptical imagingphotoacoustic imagingprototypereconstructionsimulationsoundtheoriestooltumor
项目摘要
DESCRIPTION (provided by applicant): Endonasal transsphenoidal surgery is a minimally invasive procedure that involves grinding away sphenoidal bone in the nasal cavity to access and resect pituitary tumors. Each surgery incurs the risk of death resulting from injury to the carotid arteries located behind the sphenoidal bone on either side of the pituitary gland. The long-term objective of this project is to develop the imaging technology required for real-time photoacoustic visualization of blood vessels and bone to eliminate the risk of striking a carotid artery during surgery. The specific aims of the mentored phase are to: (1) image vessel-like targets embedded in phantoms surrounded by cranial bone to characterize system requirements; and (2) develop the mathematical framework for optimized, coherence-based photoacoustic signal detection and display. This phase will be pursued at Johns Hopkins University, a pioneering institution of transsphenoidal surgeries. The specific aims of the independent phase will build on the knowledge obtained during the mentored phase to design and assess a new class of coherence-based beamformers that overcome expected challenges with laser penetration, leading to the eventual building, testing, and validation of a dedicated prototype system. The methods used to achieve these aims will include integration of beamforming theory with commercially-available optical equipment and ultrasound machines to form customized photoacoustic imaging systems. The systems will be tested on tissue-mimicking phantoms and human head models that simulate surgeries, culminating with a pilot study on patients undergoing transsphenoidal surgeries. Quantitative metrics and observer studies are proposed to compare and assess image quality, while in vivo and ex vivo visualization of vessels and vessel-like targets will be correlated with endoscopic and magnetic resonance images. Although the system will initially be developed for transsphenoidal surgeries, it will be useful in any minimally- invasive surgery that requires visualization of hidden blood vessels. In addition, the proposed coherence-based photoacoustic beamformers have broader implications for improving image quality and overcoming current depth penetration limits in multiple photoacoustic applications. My expert advisory team will consist of mentors and collaborators in interventional photoacoustics, optics, medical image analysis, neurosurgery, and the design of surgical systems. I will combine my experience in developing and implementing the first short-lag spatial coherence (SLSC) beamformer and my background in ultrasound physics and mechanical engineering with proposed training and career development in optics. Successful completion of the proposed plan promises to unlock new possibilities for clinical applications of photoacoustic imaging.
描述(由申请人提供):鼻内经蝶手术是一种微创手术,涉及磨掉鼻腔中的蝶骨,以进入并切除垂体肿瘤。每一次手术都有因损伤位于垂体两侧蝶骨后面的颈动脉而导致死亡的风险。该项目的长期目标是开发血管和骨骼实时光声可视化所需的成像技术,以消除手术期间撞击颈动脉的风险。 指导阶段的具体目标是:(1)对嵌入在颅骨周围的体模中的血管状目标进行成像,以表征系统要求;(2)开发优化的基于相干性的光声信号检测和显示的数学框架。这一阶段将在约翰霍普金斯大学进行,这是经蝶手术的先驱机构。独立阶段的具体目标将建立在指导阶段获得的知识基础上,设计和评估一类新的基于相干性的波束形成器,克服激光穿透的预期挑战,最终建立,测试和验证专用原型系统。 用于实现这些目标的方法将包括将波束形成理论与商业上可用的光学设备和超声机器集成,以形成定制的光声成像系统。该系统将在模拟手术的仿组织模型和人类头部模型上进行测试,最终对接受经蝶手术的患者进行试点研究。定量指标和观察者的研究,提出了比较和评估图像质量,而在体内和体外可视化的血管和血管样的目标将与内窥镜和磁共振图像。 虽然该系统最初将开发用于经蝶手术,但它将适用于任何需要可视化隐藏血管的微创手术。此外,所提出的基于相干性的光声波束形成器具有更广泛的意义,用于提高图像质量和克服当前的深度穿透限制在多个光声应用。我的专家顾问团队将由介入光声、光学、医学图像分析、神经外科和手术系统设计方面的导师和合作者组成。我将把我在开发和实施第一个短滞后空间相干(SLSC)波束形成器方面的经验以及我在超声物理和机械工程方面的背景与光学方面的培训和职业发展相结合。该计划的成功完成有望为光声成像的临床应用带来新的可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Muyinatu A. Lediju Bell其他文献
Overfit detection method for deep neural networks trained to beamform ultrasound images
用于训练以对超声图像进行波束形成的深度神经网络的过拟合检测方法
- DOI:
10.1016/j.ultras.2024.107562 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:4.100
- 作者:
Jiaxin Zhang;Muyinatu A. Lediju Bell - 通讯作者:
Muyinatu A. Lediju Bell
Deep Learning-Based Displacement Tracking for Post-Stroke Myofascial Shear Strain Quantification
基于深度学习的位移跟踪,用于中风后肌筋膜剪切应变量化
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Md Ashikuzzaman;Jonny Huang;Steve Bonwit;Azin Etemadimanesh;Preeti Raghavan;Muyinatu A. Lediju Bell - 通讯作者:
Muyinatu A. Lediju Bell
Mitigating skin tone bias in linear array emin vivo/em photoacoustic imaging with short-lag spatial coherence beamforming
利用短滞后空间相干波束形成减轻线性阵列体内/体外光声成像中的肤色偏差
- DOI:
10.1016/j.pacs.2023.100555 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:6.800
- 作者:
Guilherme S.P. Fernandes;João H. Uliana;Luciano Bachmann;Antonio A.O. Carneiro;Muyinatu A. Lediju Bell;Theo Z. Pavan - 通讯作者:
Theo Z. Pavan
Muyinatu A. Lediju Bell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Muyinatu A. Lediju Bell', 18)}}的其他基金
Minimizing Uncertainty in Breast Ultrasound Imaging with Real-Time Coherence-Based Beamforming
通过基于实时相干的波束形成最大限度地减少乳房超声成像的不确定性
- 批准号:
10417922 - 财政年份:2022
- 资助金额:
$ 8.79万 - 项目类别:
Minimizing Uncertainty in Breast Ultrasound Imaging with Real-Time Coherence-Based Beamforming
通过基于实时相干的波束形成最大限度地减少乳房超声成像的不确定性
- 批准号:
10679017 - 财政年份:2022
- 资助金额:
$ 8.79万 - 项目类别:
A Machine Learning Alternative to Beamforming to Improve Ultrasound Image Quality for Interventional Access to the Kidney
波束成形的机器学习替代方案可提高肾脏介入治疗的超声图像质量
- 批准号:
10170765 - 财政年份:2020
- 资助金额:
$ 8.79万 - 项目类别:
A Machine Learning Alternative to Beamforming to Improve Ultrasound Image Quality for Interventional Access to the Kidney
波束成形的机器学习替代方案可提高肾脏介入治疗的超声图像质量
- 批准号:
9913520 - 财政年份:2018
- 资助金额:
$ 8.79万 - 项目类别:
Coherence-Based Photoacoustic Image Guidance of Transsphenoidal Surgeries
基于相干性的光声图像引导经蝶手术
- 批准号:
9043878 - 财政年份:2015
- 资助金额:
$ 8.79万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 8.79万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 8.79万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 8.79万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 8.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 8.79万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 8.79万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 8.79万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 8.79万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 8.79万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 8.79万 - 项目类别:
Studentship














{{item.name}}会员




