Prospective sudden cardiac death risk stratification using CMR and echocardiography machine learning in mitral valve prolapse
使用 CMR 和超声心动图机器学习对二尖瓣脱垂进行前瞻性心脏性猝死风险分层
基本信息
- 批准号:10171903
- 负责人:
- 金额:$ 77.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-26 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectArtificial IntelligenceAutopsyCaliforniaCardiacClinicalClinical MarkersComplexDataDatabasesDefibrillatorsDevelopmentDiffuseEchocardiographyFibrosisFutureGadoliniumGoalsHeart ArrestHigh PrevalenceHolter ElectrocardiographyHybridsImageImage EnhancementImplantable DefibrillatorsIndividualLeadLeftLinkMachine LearningMagnetic ResonanceMissionMitral Valve InsufficiencyMitral Valve ProlapseMyocardialOutcomePatientsPhenotypePopulationPrevalencePrimary PreventionRegistriesRetrospective StudiesRiskRoleSamplingSan FranciscoScreening procedureSurvivorsTestingTrainingUncertaintyUnited States National Institutes of HealthUniversitiesValidationVentricularVentricular Tachycardiabasecardiovascular risk factorcoronary fibrosiscostextracellularhemodynamicshigh riskimprovedmachine learning algorithmmortalityneural network architecturenovelprognostic significanceprospectiverecurrent neural networkrisk predictionrisk prediction modelrisk stratificationsecondary analysisstemsudden cardiac deathtool
项目摘要
PROJECT SUMMARY
Mitral valve prolapse (MVP) is a common valvulopathy affecting over 170 million worldwide. Every year, 0.4-
1.9% of individuals with MVP will develop sudden cardiac arrest (SCA) or sudden cardiac death (SCD), and 7%
of SCDs in the young are caused by MVP. However, predictors of this devastating outcome are not readily
available, and indications for a primary prevention implantable cardioverter defibrillator (ICD) in MVP are lacking.
Severe mitral regurgitation explains only 50% of SCA cases in MVP. SCD/SCA risk has also been linked to a
bileaflet phenotype with mild MR, mitral annular disjunction (MAD), and left ventricular focal fibrosis on cardiac
magnetic resonance (CMR)-late gadolinium enhancement (LGE) images. Such imaging parameters (including
LGE) have not been evaluated prospectively. Moreover, they are not consistently found in SCA survivors, and
diffuse fibrosis has been proposed as an alternative arrhythmic substrate by our group and others based on
CMR/T1 mapping, strain echocardiography, and post-mortem data. Overall, it is challenging to pinpoint a unique
imaging phenotype, and uncertainty exists about which MVP patients should undergo CMR. Regardless of
arrhythmic phenotype, complex ventricular ectopy (ComVE - defined as frequent polymorphic PVCs, bigeminy
or non-sustained ventricular tachycardia) is detected in 80-100% of MVP cases prior to SCA or SCD. ComVE,
commonly associated with left ventricular fibrosis on CMR, is linked to higher all-cause mortality and SCA rates
(20% versus 12% if no ComVE, p < 0.05) based on preliminary cross-sectional data. Our central hypothesis is
that MVP patients with ComVE, because of the higher prevalence of either LGE or abnormal T1 mapping,
represent ideal CMR candidates regardless of leaflet involvement or MAD, and can be rapidly identified by an
automated “surveillance” tool within a large echocardiographic database. Moreover, we hypothesize that fibrosis
is the strongest predictor of SCD/SCA in an unprecedented, multi-center effort to longitudinally assess clinical
and CMR parameters of arrhythmic risk in MVP. Specifically, we aim to 1) Assess the role of CMR as a screening
tool for fibrosis in MVP with ComVE incorporating T1 mapping in addition to LGE in an unselected MVP sample;
2) Develop an echo-based machine-learning algorithm to detect MVP with ComVE, test its association with
myocardial fibrosis on CMR and longitudinal SCD/SCA risk; and 3) Build a novel prospective SCD/SCA risk
prediction model in MVP. Better selection of CMR candidates and development of a SCD/SCA risk prediction
tool inclusive of fibrosis by CMR are expected to dramatically improve risk stratification in MVP and establish
future criteria for primary prevention ICD trials.
项目摘要
二尖瓣脱垂(MVP)是一种常见的瓣膜病,影响全球超过1.7亿人。每年,0.4-
1.9%的MVP患者会发生心脏骤停(SCA)或心脏性猝死(SCD),7%的MVP患者会发生心脏骤停(SCA)或心脏性猝死(SCD)。
年轻人的SCD由MVP引起。然而,这种破坏性结果的预测并不容易
可用,缺乏MVP一级预防植入式心律转复除颤器(ICD)的适应症。
重度二尖瓣返流仅解释MVP中50%的SCA病例。SCD/SCA风险也与
心脏瓣膜病患者的双叶表型伴轻度MR、二尖瓣环分离(MAD)和左心室局灶性纤维化
磁共振(CMR)-晚期钆增强(LGE)图像。这种成像参数(包括
LGE)尚未进行前瞻性评价。此外,它们并不总是在SCA幸存者中发现,
我们的研究小组和其他人基于以下观点提出弥漫性纤维化是一种替代性的代谢底物:
CMR/T1标测、应变超声心动图和尸检数据。总的来说,确定一个独特的
成像表型,并且不确定哪些MVP患者应该接受CMR。无论
心律失常表型,复杂性心室异位(ComVE -定义为频繁的多态性PVC,二联律
或非持续性室性心动过速)在80-100%的MVP病例中检测到。ComVE,
通常与CMR的左心室纤维化有关,与较高的全因死亡率和SCA率有关
(20%,如果没有ComVE,则为12%,p < 0.05)。我们的核心假设是
患有ComVE的MVP患者,由于LGE或异常T1映射的患病率较高,
代表理想的CMR候选者,无论是否涉及瓣叶或MAD,
一个大型超声心动图数据库中的自动“监视”工具。此外,我们假设纤维化
是SCD/SCA的最强预测因子,这是一项前所未有的多中心纵向评估临床
MVP的CMR参数。具体而言,我们的目标是1)评估CMR作为筛查的作用
在MVP中使用ComVE的纤维化工具,除了LGE之外,ComVE还在MVP样本中合并T1标测;
2)开发一种基于回声的机器学习算法来检测ComVE的MVP,测试其与
心肌纤维化对CMR和纵向SCD/SCA风险的影响;以及3)建立新的前瞻性SCD/SCA风险
MVP中的预测模型。更好地选择CMR候选项目并制定SCD/SCA风险预测
包括CMR纤维化的工具预计将显著改善MVP的风险分层,
ICD一级预防试验的未来标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesca N Delling其他文献
Cardiac magnetic resonance evidence of diffuse myocardial fibrosis in patients with mitral valve prolapse
- DOI:
10.1186/1532-429x-17-s1-p337 - 发表时间:
2015-02-03 - 期刊:
- 影响因子:
- 作者:
An H Bui;Sébastien Roujol;Murilo Foppa;Kraig V Kissinger;Beth Goddu;Thomas H Hauser;Peter J Zimetbaum;Warren J Manning;Reza Nezafat;Francesca N Delling - 通讯作者:
Francesca N Delling
Papillary muscle native T<sub>1</sub> time is associated with severity of functional mitral regurgitation in patients with non-ischemic dilated cardiomyopathy
- DOI:
10.1186/1532-429x-18-s1-p244 - 发表时间:
2016-01-27 - 期刊:
- 影响因子:
- 作者:
Shingo Kato;Sébastien Roujol;Shadi Akhtari;Francesca N Delling;Jihye Jang;Tamer Basha;Sophie Berg;Kraig V Kissinger;Beth Goddu;Warren J Manning;Reza Nezafat - 通讯作者:
Reza Nezafat
Francesca N Delling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francesca N Delling', 18)}}的其他基金
Genetics of arrhythmic mitral valve prolapse: large pedigree collection within the UCSF MVP registry
心律失常二尖瓣脱垂的遗传学:UCSF MVP 登记处的大量谱系收集
- 批准号:
10850759 - 财政年份:2020
- 资助金额:
$ 77.98万 - 项目类别:
Prospective sudden cardiac death risk stratification using CMR and echocardiography machine learning in mitral valve prolapse
使用 CMR 和超声心动图机器学习对二尖瓣脱垂进行前瞻性心脏性猝死风险分层
- 批准号:
10600113 - 财政年份:2020
- 资助金额:
$ 77.98万 - 项目类别:
Prospective sudden cardiac death risk stratification using CMR and echocardiography machine learning in mitral valve prolapse
使用 CMR 和超声心动图机器学习对二尖瓣脱垂进行前瞻性心脏性猝死风险分层
- 批准号:
10390482 - 财政年份:2020
- 资助金额:
$ 77.98万 - 项目类别:
Prospective sudden cardiac death risk stratification using CMR and echocardiography machine learning in mitral valve prolapse
使用 CMR 和超声心动图机器学习对二尖瓣脱垂进行前瞻性心脏性猝死风险分层
- 批准号:
10034460 - 财政年份:2020
- 资助金额:
$ 77.98万 - 项目类别:
Genetic Determinants and Progression of Mitral Valve Prolapse
二尖瓣脱垂的遗传决定因素和进展
- 批准号:
8635682 - 财政年份:2014
- 资助金额:
$ 77.98万 - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




