Prospective sudden cardiac death risk stratification using CMR and echocardiography machine learning in mitral valve prolapse
使用 CMR 和超声心动图机器学习对二尖瓣脱垂进行前瞻性心脏性猝死风险分层
基本信息
- 批准号:10171903
- 负责人:
- 金额:$ 77.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-26 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectArtificial IntelligenceAutopsyCaliforniaCardiacClinicalClinical MarkersComplexDataDatabasesDefibrillatorsDevelopmentDiffuseEchocardiographyFibrosisFutureGadoliniumGoalsHeart ArrestHigh PrevalenceHolter ElectrocardiographyHybridsImageImage EnhancementImplantable DefibrillatorsIndividualLeadLeftLinkMachine LearningMagnetic ResonanceMissionMitral Valve InsufficiencyMitral Valve ProlapseMyocardialOutcomePatientsPhenotypePopulationPrevalencePrimary PreventionRegistriesRetrospective StudiesRiskRoleSamplingSan FranciscoScreening procedureSurvivorsTestingTrainingUncertaintyUnited States National Institutes of HealthUniversitiesValidationVentricularVentricular Tachycardiabasecardiovascular risk factorcoronary fibrosiscostextracellularhemodynamicshigh riskimprovedmachine learning algorithmmortalityneural network architecturenovelprognostic significanceprospectiverecurrent neural networkrisk predictionrisk prediction modelrisk stratificationsecondary analysisstemsudden cardiac deathtool
项目摘要
PROJECT SUMMARY
Mitral valve prolapse (MVP) is a common valvulopathy affecting over 170 million worldwide. Every year, 0.4-
1.9% of individuals with MVP will develop sudden cardiac arrest (SCA) or sudden cardiac death (SCD), and 7%
of SCDs in the young are caused by MVP. However, predictors of this devastating outcome are not readily
available, and indications for a primary prevention implantable cardioverter defibrillator (ICD) in MVP are lacking.
Severe mitral regurgitation explains only 50% of SCA cases in MVP. SCD/SCA risk has also been linked to a
bileaflet phenotype with mild MR, mitral annular disjunction (MAD), and left ventricular focal fibrosis on cardiac
magnetic resonance (CMR)-late gadolinium enhancement (LGE) images. Such imaging parameters (including
LGE) have not been evaluated prospectively. Moreover, they are not consistently found in SCA survivors, and
diffuse fibrosis has been proposed as an alternative arrhythmic substrate by our group and others based on
CMR/T1 mapping, strain echocardiography, and post-mortem data. Overall, it is challenging to pinpoint a unique
imaging phenotype, and uncertainty exists about which MVP patients should undergo CMR. Regardless of
arrhythmic phenotype, complex ventricular ectopy (ComVE - defined as frequent polymorphic PVCs, bigeminy
or non-sustained ventricular tachycardia) is detected in 80-100% of MVP cases prior to SCA or SCD. ComVE,
commonly associated with left ventricular fibrosis on CMR, is linked to higher all-cause mortality and SCA rates
(20% versus 12% if no ComVE, p < 0.05) based on preliminary cross-sectional data. Our central hypothesis is
that MVP patients with ComVE, because of the higher prevalence of either LGE or abnormal T1 mapping,
represent ideal CMR candidates regardless of leaflet involvement or MAD, and can be rapidly identified by an
automated “surveillance” tool within a large echocardiographic database. Moreover, we hypothesize that fibrosis
is the strongest predictor of SCD/SCA in an unprecedented, multi-center effort to longitudinally assess clinical
and CMR parameters of arrhythmic risk in MVP. Specifically, we aim to 1) Assess the role of CMR as a screening
tool for fibrosis in MVP with ComVE incorporating T1 mapping in addition to LGE in an unselected MVP sample;
2) Develop an echo-based machine-learning algorithm to detect MVP with ComVE, test its association with
myocardial fibrosis on CMR and longitudinal SCD/SCA risk; and 3) Build a novel prospective SCD/SCA risk
prediction model in MVP. Better selection of CMR candidates and development of a SCD/SCA risk prediction
tool inclusive of fibrosis by CMR are expected to dramatically improve risk stratification in MVP and establish
future criteria for primary prevention ICD trials.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesca N Delling其他文献
Cardiac magnetic resonance evidence of diffuse myocardial fibrosis in patients with mitral valve prolapse
- DOI:
10.1186/1532-429x-17-s1-p337 - 发表时间:
2015-02-03 - 期刊:
- 影响因子:
- 作者:
An H Bui;Sébastien Roujol;Murilo Foppa;Kraig V Kissinger;Beth Goddu;Thomas H Hauser;Peter J Zimetbaum;Warren J Manning;Reza Nezafat;Francesca N Delling - 通讯作者:
Francesca N Delling
Papillary muscle native T<sub>1</sub> time is associated with severity of functional mitral regurgitation in patients with non-ischemic dilated cardiomyopathy
- DOI:
10.1186/1532-429x-18-s1-p244 - 发表时间:
2016-01-27 - 期刊:
- 影响因子:
- 作者:
Shingo Kato;Sébastien Roujol;Shadi Akhtari;Francesca N Delling;Jihye Jang;Tamer Basha;Sophie Berg;Kraig V Kissinger;Beth Goddu;Warren J Manning;Reza Nezafat - 通讯作者:
Reza Nezafat
Francesca N Delling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francesca N Delling', 18)}}的其他基金
Genetics of arrhythmic mitral valve prolapse: large pedigree collection within the UCSF MVP registry
心律失常二尖瓣脱垂的遗传学:UCSF MVP 登记处的大量谱系收集
- 批准号:
10850759 - 财政年份:2020
- 资助金额:
$ 77.98万 - 项目类别:
Prospective sudden cardiac death risk stratification using CMR and echocardiography machine learning in mitral valve prolapse
使用 CMR 和超声心动图机器学习对二尖瓣脱垂进行前瞻性心脏性猝死风险分层
- 批准号:
10600113 - 财政年份:2020
- 资助金额:
$ 77.98万 - 项目类别:
Prospective sudden cardiac death risk stratification using CMR and echocardiography machine learning in mitral valve prolapse
使用 CMR 和超声心动图机器学习对二尖瓣脱垂进行前瞻性心脏性猝死风险分层
- 批准号:
10390482 - 财政年份:2020
- 资助金额:
$ 77.98万 - 项目类别:
Prospective sudden cardiac death risk stratification using CMR and echocardiography machine learning in mitral valve prolapse
使用 CMR 和超声心动图机器学习对二尖瓣脱垂进行前瞻性心脏性猝死风险分层
- 批准号:
10034460 - 财政年份:2020
- 资助金额:
$ 77.98万 - 项目类别:
Genetic Determinants and Progression of Mitral Valve Prolapse
二尖瓣脱垂的遗传决定因素和进展
- 批准号:
8635682 - 财政年份:2014
- 资助金额:
$ 77.98万 - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 77.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




