Understanding the Relationship LNP Structure, Cholesterol Trafficking, and InVivo Delivery
了解 LNP 结构、胆固醇运输和体内递送之间的关系
基本信息
- 批准号:10172933
- 负责人:
- 金额:$ 37.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcrylatesAffectAminesAnimalsApolipoprotein EBar CodesBiocompatible MaterialsBioinformaticsCRISPR/Cas technologyCell Culture TechniquesCell LineCellsChemical StructureChemicalsChemistryCholesterolClinicalCustomDNADNA deliveryDataDiseaseDrug Delivery SystemsDyslipidemiasEndothelial CellsEpoxy CompoundsFeasibility StudiesGenesGeneticGenetic ModelsGoalsHeartHepatocyteHigh Fat DietHumanImmune responseIn VitroIndividualKnockout MiceKupffer CellsLeadLengthLipidsLipoproteinsLiverLungMeasuresMediatingMessenger RNAMusMutationNanostructuresNanotechnologyNucleic AcidsOrganismPathway interactionsPatientsPhysiologicalPropertyProtocols documentationSafetyScientistSmall Interfering RNASpleenStructureTestingTherapeuticTissuesToxic effectWild Type MouseWorkbioinformatics pipelinecell typecholesterol traffickingclinical effectclinically relevantdeep sequencingdesignexperimental studyimprovedin vitro testingin vivoinsightiterative designlipid nanoparticlelipid transportmacrophagemouse modelnanoparticlenanoparticle deliveryopen sourcepatient populationtertiary aminetraffickingtrait
项目摘要
Project Summary
Scientists can create thousands of chemically distinct nanoparticles using a growing number of high throughput
chemistries, but it is still difficult to test more than a few nanoparticles in vivo. The goal of this work is to
substantially improve how lipid nanoparticles (LNPs) deliver nucleic acid therapies by performing a systematic
high throughput in vivo LNP study. This goal will be achieved using cutting edge DNA barcoded nanoparticles;
deliverer mediated by 300 different nanoparticles can be measured in a single mouse. 4,320 chemically distinct
nanoparticles will be tested in vitro and in vivo, focusing on 2 fundamental questions. First, how does
nanoparticle structure affect cell targeting in vivo? Nanoparticle chemical and physical traits affect delivery
in vitro. However, the extent to which the same LNP traits influence delivery in animals (in vivo) is unclear. A
recently developed bioinformatics pipeline will be used to (i) systematically analyze how LNP structure affects in
in vivo delivery in macrophages, endothelial cells, and hepatocytes, both in vitro and in vivo. The same data will
be used to (ii) quantify the precision with which in vitro drug delivery predicts in vivo drug delivery. Second, how
do clinically relevant physiological changes affect delivery in vivo? LNPs are similar to lipoproteins, which
are natural lipid-containing nanostructures. Lipoproteins are actively trafficked to endothelial cells, macrophages,
and hepatocytes in vivo. Given that lipoprotein trafficking changes in patients with high cholesterol, taking statins,
and patients with many other conditions, LNP transport may also change. The top 600 in vivo LNPs from the
4,320 LNP in vivo screen will be administered to genetic mouse models of aberrant lipid transport in order to (iii)
investigate how genetic alterations in cholesterol trafficking affect in vivo delivery. This work will make 5
significant contributions to nanotechnology. First, the extent to which LNP chemical traits influence delivery
directly in vivo will be tested; relationships between nanoparticle structure and delivery are studied in vitro.
Second, the precision with which in vitro nanoparticle delivery predicts in vivo delivery will be quantified. This
could increase the efficiency with which clinical nanoparticles are discovered. Third, the effect of clinically
relevant physiological changes on LNP delivery will be examined. Nanoparticles can interact with cholesterol
trafficking pathways; these interactions are likely to change with disease and can affect nanoparticle targeting /
safety. Fourth, the feasibility of studying thousands of LNPs in vivo will be demonstrated. Fifth, open source
protocols for nanoparticle barcoding will be established and disseminated. These results will provide crucial
insight into the ways LNP chemical traits and specific genes alter LNP delivery, informing the design of LNPs
that deliver nucleic acid cargos (e.g., siRNA, mRNA, CRISPR-Cas9) for numerous therapeutic applications.
项目摘要
科学家们可以使用越来越多的高通量技术制造出数千种化学性质不同的纳米颗粒。
化学,但仍然难以在体内测试超过几个纳米颗粒。这项工作的目标是
通过进行系统的核酸治疗,
高通量体内LNP研究。这一目标将通过使用尖端的DNA条形码纳米颗粒来实现;
可以在单个小鼠中测量由300种不同纳米颗粒介导的递送剂。4,320种化学成分不同
纳米颗粒将在体外和体内进行测试,重点是两个基本问题。首先,
纳米颗粒结构影响体内细胞靶向?纳米颗粒的化学和物理特性影响递送
体外然而,在何种程度上相同的LNP性状影响交付在动物(体内)是不清楚的。一
最近开发的生物信息学管道将用于(i)系统地分析LNP结构如何影响
在巨噬细胞、内皮细胞和肝细胞中的体内递送,包括体外和体内。同样的数据将
用于(ii)量化体外药物递送预测体内药物递送的精度。二是如何
临床相关生理变化是否影响体内给药?LNP类似于脂蛋白,
是天然的含脂质的纳米结构。脂蛋白被主动运输到内皮细胞,巨噬细胞,
和肝细胞。考虑到高胆固醇患者脂蛋白运输的变化,服用他汀类药物,
以及患有许多其他疾病的患者,LNP转运也可能发生变化。来自美国的前600个体内LNP
将4,320 LNP体内筛选施用至异常脂质转运的遗传小鼠模型,以(iii)
研究胆固醇运输的遗传改变如何影响体内递送。这项工作将使5
对纳米技术的重大贡献。首先,LNP化学性状影响分娩的程度
直接在体内进行测试;纳米颗粒结构和递送之间的关系在体外进行研究。
其次,将量化体外纳米颗粒递送预测体内递送的精度。这
可以提高发现临床纳米颗粒的效率。三、临床效果
将检查LNP递送的相关生理变化。纳米颗粒可以与胆固醇相互作用
运输途径;这些相互作用可能会随着疾病而变化,并可能影响纳米颗粒靶向/靶向性。
安全为代价的第四,将证明在体内研究数千种LNP的可行性。第五,开源
将制定和传播纳米粒子条形码化的方案。这些结果将提供至关重要的
深入了解LNP化学性状和特定基因改变LNP递送的方式,为LNP的设计提供信息
其递送核酸货物(例如,siRNA、mRNA、CRISPR-Cas9)用于多种治疗应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Dahlman其他文献
James Dahlman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Dahlman', 18)}}的其他基金
Highly Specific ZFN-Based HSC Gene Editing Therapies Identified By In Vivo Barcode Nanoparticle Screens And Rationally Designed Mrna
通过体内条形码纳米粒子筛选和合理设计的 Mrna 鉴定出高度特异性的基于 ZFN 的 HSC 基因编辑疗法
- 批准号:
9810724 - 财政年份:2019
- 资助金额:
$ 37.18万 - 项目类别:
Understanding the Relationship LNP Structure, Cholesterol Trafficking, and InVivo Delivery
了解 LNP 结构、胆固醇运输和体内递送之间的关系
- 批准号:
10753191 - 财政年份:2019
- 资助金额:
$ 37.18万 - 项目类别:
Highly Specific ZFN-Based HSC Gene Editing Therapies Identified By In Vivo Barcode Nanoparticle Screens And Rationally Designed Mrna
通过体内条形码纳米粒子筛选和合理设计的 Mrna 鉴定出高度特异性的基于 ZFN 的 HSC 基因编辑疗法
- 批准号:
10018962 - 财政年份:2019
- 资助金额:
$ 37.18万 - 项目类别:
Highly Specific ZFN-Based HSC Gene Editing Therapies Identified By In Vivo Barcode Nanoparticle Screens And Rationally Designed Mrna
通过体内条形码纳米粒子筛选和合理设计的 Mrna 鉴定出高度特异性的基于 ZFN 的 HSC 基因编辑疗法
- 批准号:
10783511 - 财政年份:2019
- 资助金额:
$ 37.18万 - 项目类别:
Highly Specific ZFN-Based HSC Gene Editing Therapies Identified By In Vivo Barcode Nanoparticle Screens and Rationally Designed mRNA
通过体内条码纳米粒子筛选和合理设计的 mRNA 鉴定出基于 ZFN 的高度特异性 HSC 基因编辑疗法
- 批准号:
10809430 - 财政年份:2019
- 资助金额:
$ 37.18万 - 项目类别:
Understanding the Relationship LNP Structure, Cholesterol Trafficking, and InVivo Delivery
了解 LNP 结构、胆固醇运输和体内递送之间的关系
- 批准号:
10624289 - 财政年份:2019
- 资助金额:
$ 37.18万 - 项目类别:
Highly Specific ZFN-Based HSC Gene Editing Therapies Identified By In Vivo Barcode Nanoparticle Screens And Rationally Designed Mrna
通过体内条形码纳米粒子筛选和合理设计的 Mrna 鉴定出高度特异性的基于 ZFN 的 HSC 基因编辑疗法
- 批准号:
10227746 - 财政年份:2019
- 资助金额:
$ 37.18万 - 项目类别:
Understanding the Relationship LNP Structure, Cholesterol Trafficking, and InVivo Delivery
了解 LNP 结构、胆固醇运输和体内递送之间的关系
- 批准号:
10473525 - 财政年份:2019
- 资助金额:
$ 37.18万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 37.18万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 37.18万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 37.18万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 37.18万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 37.18万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 37.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 37.18万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 37.18万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 37.18万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 37.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




