Context-specific and combinatorial genetic regulatory grammars in diabetes
糖尿病的上下文特定和组合遗传调控语法
基本信息
- 批准号:10172891
- 负责人:
- 金额:$ 41.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAllelesAmericanAmino Acid SequenceAmino AcidsAnimal ModelBeta CellBinding SitesBiologicalBiological AssayBiological ProcessBlood VesselsCRISPR/Cas technologyCell physiologyChromatinChromosomesCodeComplexComputer AnalysisCoupledDNADNA BindingDNA Binding DomainDNA SequenceDevelopmentDiabetes MellitusDiagnosisDiseaseDrug ScreeningEnhancersEnvironmentEnvironmental Risk FactorExonsFoundationsFunctional disorderGenesGeneticGenetic CodeGenetic TranscriptionGenetic VariationGenomeGenomic approachGlucoseGoalsHumanIn SituInsulinIslet CellIslets of LangerhansKnowledgeLeadMapsMeasuresMediatingMedical Care CostsMolecularMolecular ProfilingMonitorMorbidity - disease rateMutationNeurologicNon-Insulin-Dependent Diabetes MellitusNucleotidesPhenotypePhysiologicalPositioning AttributePrediabetes syndromeProteinsRFX regulatory factorRNARegulationRegulator GenesRegulatory ElementReporterReportingResearchResolutionRiskRodentSingle Nucleotide PolymorphismSiteStretchingSurveysSyndromeSystemTestingTimeTranscriptional RegulationTranslatingUntranslated RNAVariantWagesWorkcombinatorialcostdiabetes mellitus geneticsdiabeticepigenomeexperimental analysisfasting glucosefunctional genomicsgenetic signaturegenetic variantgenome editinggenome wide association studyisletneonatal diabetes mellitusnovelprecision drugsprecision geneticspromoterresponserisk variantscreeningtraittranscription factortranscriptometranslational approach
项目摘要
Over 29 million Americans are diagnosed with diabetes and another 86 million have prediabetes,
resulting in an estimated $245 billion in annual medical costs and lost work and wages
(https://www.cdc.gov/features/diabetesfactsheet/). Diabetes is a complex disease that results from the
combined effects of genetic and environmental factors over time. Both common and rare genetic forms of
diabetes share transcriptional dysregulation of insulin-producing beta cells in pancreatic islets as a hallmark.
For example, the most common form of diabetes, type 2 diabetes (T2D), has been genetically dissected with
multiple genome wide association studies (GWAS) that have collectively revealed >100 independent disease
and related-trait associated single nucleotide polymorphisms (SNPs). Most of these loci localize to non-coding
regions and have relatively small effect sizes. Using functional genomics approaches, we and others have
shown these SNPs are highly significantly enriched to overlap important transcriptional regulatory elements like
stretch enhancers (SE) or enhancer clusters that are specific to pancreatic islets. More recently, we found that
T2D GWAS loci were strikingly and specifically enriched in islet Regulatory Factor X (RFX) footprint motifs.
Remarkably, within and across independent loci, T2D risk alleles that overlap with RFX footprints uniformly
disrupt the RFX motifs at high-information content positions. Importantly, rare autosomal recessive mutations
that alter DNA-contacting amino acids in the DNA binding domain of RFX6 result in Mitchell–Riley syndrome,
which is characterized by neonatal diabetes. Our findings could represent a connection between rare coding
variation in the islet master TF RFX6 and common noncoding variations in multiple target sites for this TF. The
impact of these variations mirror the expected physiological effect, with coding variants that result in neonatal
diabetes and noncoding variants that result in later-onset T2D. However, it is presently unknown how these
different classes of genetic variants might interact. To help close these major gaps in knowledge, we will build
mechanistic understanding of genetic variant effects on transcriptional regulation and the impact these effects
could have on diabetes. We will accomplish this through integrative computational analyses of experimental
measures of genome, epigenome, and transcriptome profile variation across cellular states and species
coupled with novel high-throughput reporter assays to test the functional relevance of targeted genetic
perturbations. The resulting increase in understanding of diabetes genetic regulatory grammars will provide a
foundation for interpreting disease-relevant genetic variation and providing more precise disease predictions.
超过 2900 万美国人被诊断患有糖尿病,另外 8600 万美国人患有糖尿病前期,
导致每年估计 2,450 亿美元的医疗费用以及工作和工资损失
(https://www.cdc.gov/features/diabetesfactsheet/)。糖尿病是一种复杂的疾病,其原因是
随着时间的推移,遗传和环境因素的综合影响。常见和罕见的遗传形式
糖尿病的共同特点是胰岛中产生胰岛素的β细胞的转录失调。
例如,最常见的糖尿病形式,2 型糖尿病 (T2D),已通过基因剖析
多项全基因组关联研究 (GWAS) 共同揭示了超过 100 种独立疾病
以及相关性状相关的单核苷酸多态性(SNP)。大多数这些位点定位于非编码
区域并具有相对较小的效应量。使用功能基因组学方法,我们和其他人已经
显示这些 SNP 高度显着富集,与重要的转录调控元件重叠,例如
胰岛特异性的拉伸增强子 (SE) 或增强子簇。最近,我们发现
T2D GWAS 位点在胰岛调节因子 X (RFX) 足迹基序中显着富集。
值得注意的是,在独立基因座之内和之间,T2D 风险等位基因与 RFX 足迹一致重叠
破坏高信息内容位置的 RFX 主题。重要的是,罕见的常染色体隐性突变
改变 RFX6 DNA 结合域中 DNA 接触氨基酸会导致 Mitchell-Riley 综合征,
其特点是新生儿糖尿病。我们的发现可能代表了稀有编码之间的联系
胰岛主 TF RFX6 中的变异以及该 TF 的多个目标位点中的常见非编码变异。这
这些变异的影响反映了预期的生理效应,编码变异导致新生儿
糖尿病和导致迟发性 T2D 的非编码变异。但目前尚不清楚这些
不同类别的遗传变异可能会相互作用。为了帮助缩小这些主要的知识差距,我们将建立
遗传变异对转录调控影响的机制理解以及这些影响的影响
可能对糖尿病有影响。我们将通过对实验的综合计算分析来实现这一目标
测量跨细胞状态和物种的基因组、表观基因组和转录组谱变化
结合新颖的高通量报告分析来测试目标遗传的功能相关性
扰动。由此增加对糖尿病基因调控语法的理解将提供
为解释与疾病相关的遗传变异和提供更精确的疾病预测奠定了基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen CJ Parker其他文献
Stephen CJ Parker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen CJ Parker', 18)}}的其他基金
Context-specific and combinatorial genetic regulatory grammars in diabetes
糖尿病的上下文特定和组合遗传调控语法
- 批准号:
10434740 - 财政年份:2018
- 资助金额:
$ 41.2万 - 项目类别:
Synthesizing genome, epigenome, and transcriptome datasets in type 2 diabetes.
合成 2 型糖尿病的基因组、表观基因组和转录组数据集。
- 批准号:
9068907 - 财政年份:2015
- 资助金额:
$ 41.2万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 41.2万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 41.2万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 41.2万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 41.2万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 41.2万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 41.2万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 41.2万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 41.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 41.2万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 41.2万 - 项目类别: