A Molecular and Cellular Atlas of the Marmoset Brain
狨猴大脑的分子和细胞图谱
基本信息
- 批准号:10171914
- 负责人:
- 金额:$ 138.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-20 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlzheimer&aposs DiseaseAnatomyAnimalsAreaAtlasesAttention deficit hyperactivity disorderBRAIN initiativeBehaviorBehavioralBirthBrainBrain DiseasesBrain regionBreedingCallithrixCallithrix jacchus jacchusCategoriesCellsCellular MorphologyCensusesCercopithecidaeClassificationCognitionCommunitiesComplexComputer AnalysisComputer softwareCorpus striatum structureDataData AnalysesData SetDrug TargetingElectrophysiology (science)EmbryoFamilyFunctional disorderFutureGene Expression ProfileGenesGeneticGenetic EngineeringGenetic ModelsGenetic ResearchGenomeGilles de la Tourette syndromeGoalsHousingHumanIn SituIndividualInfrastructureKnock-inKnowledgeLabelLocationMacacaMapsMeasuresMediatingMental disordersMethodsModelingMolecularMonitorMorphologyMusNeurodevelopmental DisorderNeuronsNeurosciencesNeurosciences ResearchOrganPatternPhylogenetic AnalysisPopulationPrefrontal CortexPrimatesProtocols documentationReproductionResearchResourcesRodentSamplingSchizophreniaSocial InteractionStudy modelsTechniquesTechnologyThalamic structureTranscriptUnited States National Institutes of HealthViralWorkanalytical toolautism spectrum disorderbasecell typecognitive functioncostdata managementdata sharingeffective therapyfamily structuregenetic manipulationimaging approachknockout genemultiphoton imagingmutantneurobiological mechanismprogramssingle-cell RNA sequencingsocialsocial communicationtooltranscriptometranscriptome sequencing
项目摘要
PROJECT SUMMARY/ABSTRACT
The complexity of the mammalian brain is unparalleled by any other organ, and understanding its
cellular composition is essential to understand how it gives rise to cognition and behavior. It is clear that brain
contains many more cell types than have been described to date. Many cell types can now be distinguished by
their patterns of gene expression, and knowledge of these patterns can provide genetic access to specific
populations of neurons. The ability to manipulate and measure activity in genetically defined cell types and
circuits will allow us to move from a static anatomical description to a dynamic understanding of brain function.
Although genetic tools have dramatically advanced our understanding of brain function, they have
largely been confined to mice. While mice are essential models for many areas of neuroscience, there are also
many aspects of higher brain function that cannot be adequately modeled in rodents. Similarly, many brain
disorders affect higher cognitive functions that have no clear parallels in rodents. There is thus an urgent need
for new genetic models that are phylogenetically closer to humans.
A promising emerging primate model is the common marmoset, a small new world primate that has
many advantages for neuroscience and genetic research. In the past three years, we have established a large
marmoset colony and a genetic engineering platform at MIT to generate marmoset genetic models for various
brain disorders. We have successfully demonstrated efficient gene knockout and knockin techniques in
marmoset embryos. We have also generated and assembled high quality marmoset genome sequence. In
addition, we are developing hardware and software for automated behavioral analysis as well as
electrophysiological recording and multi-photon imaging approaches. Our goal is to make this a national
technology and resource center for using marmosets to study brain function and dysfunction. Here propose to
add another important dataset to this potentially transformative model—using single cell RNAseq to
systematically define cell types, their location and morphology. These data will be critical for generating cell
type-specific genetic tools as well as for monitoring and manipulating circuit activity in a cell type-specific
manner, key approaches to understand brain function and dysfunction.
项目总结/摘要
哺乳动物大脑的复杂性是任何其他器官都无法比拟的,了解它的复杂性,
细胞组成对于了解它如何产生认知和行为至关重要。很明显,大脑
含有比迄今为止所描述的更多的细胞类型。许多细胞类型现在可以通过
他们的基因表达模式,这些模式的知识可以提供遗传访问特定的
神经元群体。操纵和测量遗传定义的细胞类型中的活性的能力,
电路将使我们从静态的解剖学描述转向对大脑功能的动态理解。
尽管遗传工具极大地促进了我们对大脑功能的理解,
主要局限于小鼠。虽然小鼠是神经科学许多领域的基本模型,但也有一些研究。
高级大脑功能的许多方面无法在啮齿动物中充分建模。同样,许多大脑
这些疾病影响高级认知功能,在啮齿类动物中没有明显的相似之处。因此,迫切需要
寻找在遗传学上更接近人类的新遗传模型。
一种有希望的新兴灵长类动物模型是普通的绒猴,一种新世界的小型灵长类动物,
对神经科学和遗传学研究有很多好处。在过去的三年里,我们建立了一个大型的
绒猴群体和麻省理工学院的遗传工程平台,以生成绒猴遗传模型,
脑部疾病。我们已经成功地证明了有效的基因敲除和敲入技术,
绒猴胚胎我们还生成并组装了高质量的绒猴基因组序列。在
此外,我们正在开发用于自动行为分析的硬件和软件,
电生理记录和多光子成像方法。我们的目标是让它成为全国性的
利用绒猴研究大脑功能和功能障碍的技术和资源中心。在此提议,
为这个潜在的变革性模型添加了另一个重要的数据集-使用单细胞RNAseq,
系统地定义细胞类型、它们的位置和形态。这些数据对于生成细胞至关重要
类型特异性遗传工具以及用于监测和操纵细胞类型特异性
方式,了解大脑功能和功能障碍的关键方法。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thalamic subnetworks as units of function.
- DOI:10.1038/s41593-021-00996-1
- 发表时间:2022-03
- 期刊:
- 影响因子:25
- 作者:Roy, Dheeraj S.;Zhang, Ying;Halassa, Michael M.;Feng, Guoping
- 通讯作者:Feng, Guoping
Sibling chimerism among microglia in marmosets.
狨猴小胶质细胞中的兄弟嵌合现象。
- DOI:10.1101/2023.10.16.562516
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:DelRosario,RicardoCH;Krienen,FennaM;Zhang,Qiangge;Goldman,Melissa;Mello,Curtis;Lutservitz,Alyssa;Ichihara,Kiku;Wysoker,Alec;Nemesh,James;Feng,Guoping;McCarroll,StevenA
- 通讯作者:McCarroll,StevenA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guoping Feng其他文献
Guoping Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guoping Feng', 18)}}的其他基金
BRAIN CONNECTS: Comprehensive regional projection map of marmoset with single axon and cell type resolution
大脑连接:具有单轴突和细胞类型分辨率的狨猴综合区域投影图
- 批准号:
10664170 - 财政年份:2023
- 资助金额:
$ 138.73万 - 项目类别:
Functional dissection of thalamocortical interactions through genetically-defined TRN subnetworks
通过基因定义的 TRN 子网络对丘脑皮质相互作用进行功能剖析
- 批准号:
10622039 - 财政年份:2022
- 资助金额:
$ 138.73万 - 项目类别:
A Genetic Engineering Toolbox for Marmosets (GETMarm): Development and optimization of genome editing and assisted reproduction techniques for marmoset models
狨猴基因工程工具箱 (GETMarm):狨猴模型基因组编辑和辅助生殖技术的开发和优化
- 批准号:
10624895 - 财政年份:2021
- 资助金额:
$ 138.73万 - 项目类别:
Developing cell type-specific enhancers and connectivity mapping pipelines for marmosets
开发狨猴的细胞类型特异性增强剂和连接映射管道
- 批准号:
10653998 - 财政年份:2021
- 资助金额:
$ 138.73万 - 项目类别:
A Genetic Engineering Toolbox for Marmosets (GETMarm): Development and optimization of genome editing and assisted reproduction techniques for marmoset models
狨猴基因工程工具箱 (GETMarm):狨猴模型基因组编辑和辅助生殖技术的开发和优化
- 批准号:
10286437 - 财政年份:2021
- 资助金额:
$ 138.73万 - 项目类别:
A Genetic Engineering Toolbox for Marmosets (GETMarm): Development and optimization of genome editing and assisted reproduction techniques for marmoset models
狨猴基因工程工具箱 (GETMarm):狨猴模型基因组编辑和辅助生殖技术的开发和优化
- 批准号:
10459550 - 财政年份:2021
- 资助金额:
$ 138.73万 - 项目类别:
Developing cell type-specific enhancers and connectivity mapping pipelines for marmosets
开发狨猴的细胞类型特异性增强剂和连接映射管道
- 批准号:
10478105 - 财政年份:2021
- 资助金额:
$ 138.73万 - 项目类别:
A Genetic Engineering Toolbox for Marmosets (GETMarm): Development and optimization of genome editing and assisted reproduction techniques for marmoset models
狨猴基因工程工具箱 (GETMarm):狨猴模型基因组编辑和辅助生殖技术的开发和优化
- 批准号:
10832288 - 财政年份:2021
- 资助金额:
$ 138.73万 - 项目类别:
Developing cell type-specific enhancers and connectivity mapping pipelines for marmosets
开发狨猴的细胞类型特异性增强剂和连接映射管道
- 批准号:
10271630 - 财政年份:2021
- 资助金额:
$ 138.73万 - 项目类别:
Functional dissection of thalamocortical interactions through genetically-defined TRN subnetworks
通过基因定义的 TRN 子网络对丘脑皮质相互作用进行功能剖析
- 批准号:
10408808 - 财政年份:2019
- 资助金额:
$ 138.73万 - 项目类别:














{{item.name}}会员




