Mechanisms and functional implications of SARS-CoV-2 mRNA capping and modification.
SARS-CoV-2 mRNA 加帽和修饰的机制和功能意义。
基本信息
- 批准号:10185716
- 负责人:
- 金额:$ 40.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAddressAdenosineAntiviral AgentsAreaAttentionBiochemicalBiologicalBiologyCell physiologyCellsCellular biologyCoronavirusDNA Polymerase IIDataDefense MechanismsDetectionDevelopmentEnsureEnzymesEventFamilyFoundationsFutureGene ExpressionGenerationsGenetic TranscriptionGenetic TranslationGenomeGenomicsGlareGuanosineGuanosine TriphosphateImmunologic SurveillanceImmunoprecipitationInfectionInfluentialsKnowledgeLabelLysineMass Spectrum AnalysisMessenger RNAMethylationModificationMolecularMolecular BiologyMutation AnalysisOpen Reading FramesPathogenesisPlayProcessPropertyProteinsRNARNA CapsRNA StabilityRNA Virus InfectionsRNA VirusesRNA metabolismRNA methylationRNA replicationRegulationRepliconRiboseRoleSARS coronavirusStructureSystemTherapeuticTranscriptTransfectionTranslation InitiationUntranslated RNAViralViral GenesViral PathogenesisViral ProteinsVirusVirus DiseasesVirus ReplicationWorkbasedrug developmentguanylyltransferaseinnate immune mechanismsinnate immune sensinginsightmRNA StabilitymRNA cappingnovelnovel therapeuticsnovel vaccinesnucleotidyltransferasesuccesstherapeutic developmentvaccine developmentviral RNAvirus host interaction
项目摘要
SARS-CoV-2 must cap and methylate its mRNAs to ensure their stability, translatability, and avoid
detection by host innate immune mechanism as non-self transcripts. The process of RNA capping, therefore,
is pivotal to the success of a SARS-CoV-2 infection. It also represents a key contributor to the molecular
mechanisms of pathogenesis as well as a very attractive target for the development of antiviral therapeutics.
However, there are three key knowledge gaps that have slowed progress in our understanding of this
important area of coronavirus molecular biology that will be addressed in this proposal. First, the identity of the
guanylyltransferase (GTase), the centerpiece of the viral RNA capping machinery that transfers GTP to the 5'
end of the nascent transcript, is unknown. We will use a two-pronged strategy of complementary molecular
and biochemical approaches to address this glaring gap in our understanding of SARS-CoV-2 mRNA capping
mechanisms, laying the foundation for the development of capping-targeted antivirals. Second, while RNA
capping is a regulated process and uncapped RNAs play an influential role in the biology of other positive
sense RNA viral infections, it is not known if RNA capping is a regulated or a default event in coronaviruses.
We will determine if uncapped RNAs are produced by SARS-CoV-2 in order to establish the foundation for a
role of regulated capping and non-coding viral transcripts in SARS-CoV-2 infections. Finally, every cellular
mRNA that begins with a terminal adenosine has that residue 2'O methylated at the ribose ring as well as N6
methylated on the adenosine base (m6Am). The strong conservation of this m6Am modification indicates its
importance in cell biology, an assertation recently confirmed with data suggesting that the modification
increases translatability and facilitates recognition of the transcript as `self'. Interestingly, SARS-CoV-2 and
other coronaviruses all initiate their transcripts with an A residue, but it is not known whether that A residue
contains an m6A modification. In the final part of this project, we will determine the m6A modification status of
the terminal 5' A residue of SARS-CoV-2 mRNAs and investigate the role that the modification (or lack thereof)
plays in the biology of coronaviral transcripts. Collectively these studies will provide important new insights into
the molecular biology of SARS-CoV-2 and open up avenues for the development of broad-spectrum anti-
coronaviral therapeutics.
SARS-COV-2必须限制并甲基化其mRNA,以确保其稳定性,翻译和避免
通过宿主先天免疫机制作为非自我转录本的检测。因此,RNA封盖的过程,
对于SARS-COV-2感染的成功至关重要。它也代表了分子的关键因素
发病机理的机制以及抗病毒疗法发展的非常有吸引力的靶标。
但是,有三个关键知识差距在我们的理解中放缓了进步
冠状病毒分子生物学的重要领域将在本提案中解决。首先,
Guanylyltransferase(GTase),病毒RNA封盖机械的核心,将GTP转移至5'
新生转录本的结尾是未知的。我们将使用互补分子的两种策略
和生化方法,以解决我们对SARS-COV-2 mRNA封盖的理解中的明显差距
机制,为开发定位的抗病毒药的发展奠定了基础。第二,而RNA
封盖是一个受调节的过程,未盖上的RNA在其他阳性的生物学中起着影响力
有义务RNA病毒感染,尚不清楚RNA限值是冠状病毒中的调节还是默认事件。
我们将确定SARS-COV-2是否生产未盖的RNA,以建立A的基础
SARS-COV-2感染中受调节的封盖和非编码病毒转录本的作用。最后,每个细胞
从末端腺苷开始的mRNA具有核糖环和N6的残基2'O甲基化
在腺苷碱(M6AM)上甲基化。该M6AM修改的强大保护表明其
在细胞生物学中的重要性,最近用数据证实了这一主张,表明修改
提高翻译性并促进对成绩单的认识为“自我”。有趣的是,SARS-COV-2和
其他冠状病毒均用A残留物启动其笔录,但尚不知道该残留物是否是
包含M6A修改。在该项目的最后部分,我们将确定M6A修改状态
末端5'SARS-COV-2 mRNA残留物,并研究了修饰(或缺乏修饰)的作用
发挥冠状病毒转录的生物学作用。这些研究集体将为重要的新见解
SARS-COV-2的分子生物学,并为开发广谱抗的途径开辟了道路
冠状病毒疗法。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Geiss其他文献
Brian Geiss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Geiss', 18)}}的其他基金
A High-Throughput Screen for Antiviral Inhibitors of the Alphavirus RNA Capping Enzyme
甲病毒 RNA 加帽酶抗病毒抑制剂的高通量筛选
- 批准号:
8963432 - 财政年份:2014
- 资助金额:
$ 40.71万 - 项目类别:
A High-Throughput Screen for Antiviral Inhibitors of the Alphavirus RNA Capping Enzyme
甲病毒 RNA 加帽酶抗病毒抑制剂的高通量筛选
- 批准号:
9184537 - 财政年份:2014
- 资助金额:
$ 40.71万 - 项目类别:
A High-Throughput Screen for Antiviral Inhibitors of the Alphavirus RNA Capping Enzyme
甲病毒 RNA 加帽酶抗病毒抑制剂的高通量筛选
- 批准号:
8799155 - 财政年份:2014
- 资助金额:
$ 40.71万 - 项目类别:
Development and optimization of novel anti -flavivirus compounds
新型抗黄病毒化合物的开发和优化
- 批准号:
8261432 - 财政年份:2011
- 资助金额:
$ 40.71万 - 项目类别:
A High-Throughput Assay for Probes of the Flavivirus RNA Guanylyltransferase
黄病毒 RNA 鸟苷基转移酶探针的高通量测定
- 批准号:
8070184 - 财政年份:2010
- 资助金额:
$ 40.71万 - 项目类别:
A High-Throughput Assay for Probes of the Flavivirus RNA Guanylyltransferase
黄病毒 RNA 鸟苷基转移酶探针的高通量测定
- 批准号:
8204514 - 财政年份:2010
- 资助金额:
$ 40.71万 - 项目类别:
Development and optimization of novel anti -flavivirus compounds
新型抗黄病毒化合物的开发和优化
- 批准号:
7675657 - 财政年份:2009
- 资助金额:
$ 40.71万 - 项目类别:
Development and optimization of novel anti -flavivirus compounds
新型抗黄病毒化合物的开发和优化
- 批准号:
8465809 - 财政年份:
- 资助金额:
$ 40.71万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Identifying the targets of virus-induced PARPs during SARS-CoV-2 infection
识别 SARS-CoV-2 感染期间病毒诱导的 PARP 的靶标
- 批准号:
10573499 - 财政年份:2022
- 资助金额:
$ 40.71万 - 项目类别:
Inhibiting Viral Macrodomains Using Structure-Based Design
使用基于结构的设计抑制病毒宏域
- 批准号:
10512631 - 财政年份:2022
- 资助金额:
$ 40.71万 - 项目类别:
Project 1 – Development of Orally Bioavailable beta-CoV Inhibitors
项目 1 — 口服生物可利用的 β-CoV 抑制剂的开发
- 批准号:
10513942 - 财政年份:2022
- 资助金额:
$ 40.71万 - 项目类别:
Loss of A-to-I editing stimulates SARS-CoV-2 anti-viral responses
A-to-I 编辑缺失会刺激 SARS-CoV-2 抗病毒反应
- 批准号:
10353022 - 财政年份:2022
- 资助金额:
$ 40.71万 - 项目类别: