OPSMO - Machine Learning Driven Business Support Tool for Tech Startups
OPSMO - 面向科技初创企业的机器学习驱动的业务支持工具
基本信息
- 批准号:10035790
- 负责人:
- 金额:$ 30.47万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Collaborative R&D
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For tech consultancies and startups, searching advertised contract opportunities, be it a project in the public sector or an individual consultant contract, is time consuming and costly. Writing a bid can take one or two months and a fulltime bid coordinator can cost upwards of £30k/year. Proposal success rates are typically 1 in 12 meaning a tech startup may be without funding for an entire year, which for early-stage startups can be fatal. Technology is changing rapidly and staying informed of cutting-edge developments across every layer of the software stack, across every algorithmic technique, and across every cloud provider is almost impossible, which inhibits CTOs and CEOs from making strategic investments in skills and services. Existing small consultancies of various expertise aiming to pivot towards tech to take advantage of the substantial opportunities find it challenging to upskill their knowledge of tech quickly enough to generate winning ideas and the time of their often-limited technical resources can be hard to obtain. A step change solution is needed to convert creative innovation into sustainable growth.OPSMO uses machine learning and graph database technology to deliver a technical bid writing support system for tech startups that identifies funding opportunities, inspires ideation and innovation, and informs cost and risk estimates. It streamlines proposal writing, reducing writing time and bid writing resource costs. By capturing galaxies of data on cutting edge technological innovations, OPSMO associates tech stacks with problems, paints a picture of the solution, and generates the required team roles, associated costs and risks associated with the stack. By fast tracking bid writing, OPSMO liberates startups to network, brainstorm, create, iterate, and build.Through its fully automated data ingestion pipeline, OPSMO streams data on contract opportunities in the UK and Europe; data on tech jobs, roles, skills, and salaries; data on technological innovations, their uptake trends, and the connections between them; and builds a big data knowledge graph to associate technological advances with funding opportunities and problem spaces. Recent developments in deep learning natural language processing provide OPSMO's algorithms with enhanced capabilities for extracting mentions of technological tools from text, for classifying funding opportunities by theme, for calculating association strengths between tools, and to track trends in the popularity of solution architecture. OPSMO's cloud hosted graph database provides 100,000 queries per second across billions of connections giving startups a smooth user experience when accessing its targeted knowledge graph, unmatched in scale an insight.
对于科技咨询公司和初创公司来说,搜索广告中的合同机会,无论是公共部门的项目还是个人顾问合同,都是耗时和昂贵的。写一份标书可能需要一到两个月的时间,一名全职竞标协调员的费用可能高达3万GB/年。提案成功率通常为12%,这意味着一家科技初创公司可能一整年都没有资金,这对处于早期阶段的初创公司来说可能是致命的。技术日新月异,几乎不可能在软件堆栈的每一层、每种算法技术和每一家云提供商之间随时了解尖端发展,这阻碍了首席技术官和首席执行官在技能和服务方面进行战略投资。现有的小型咨询公司拥有各种专业知识,旨在转向技术领域,以利用大量机会,但它们发现,要迅速提高自己的技术知识,以产生制胜的想法,是一件具有挑战性的事情,而且他们往往有限的技术资源的时间可能很难获得。OPSMO使用机器学习和图形数据库技术,为科技初创企业提供一个技术标书撰写支持系统,该系统能够识别融资机会,激发想法和创新,并告知成本和风险估计。它简化了提案撰写,减少了撰写时间和投标撰写资源成本。通过捕获有关尖端技术创新的大量数据,OPSMO将技术堆栈与问题联系起来,描绘出解决方案的图景,并生成所需的团队角色、相关成本和与堆栈相关的风险。通过快速跟踪投标,OPSMO将初创企业解放出来,让它们建立网络、集思广益、创造、迭代和建立。通过其全自动数据接收管道,OPSMO传输有关英国和欧洲合同机会的数据;关于技术工作、角色、技能和工资的数据;关于技术创新、其采用趋势以及它们之间的联系的数据;并构建大数据知识图谱,将技术进步与融资机会和问题空间相关联。深度学习自然语言处理的最新发展为OPSMO的算法提供了增强的能力,用于从文本中提取对技术工具的提及,用于按主题对资助机会进行分类,用于计算工具之间的关联强度,以及跟踪解决方案体系结构的流行趋势。OPSMO的云托管图形数据库每秒提供10万次查询,跨越数十亿个连接,使初创企业在访问其目标知识图谱时获得流畅的用户体验,在规模和洞察力方面无与伦比。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 30.47万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 30.47万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 30.47万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 30.47万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 30.47万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 30.47万 - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 30.47万 - 项目类别:
Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:
2879865 - 财政年份:2027
- 资助金额:
$ 30.47万 - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 30.47万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 30.47万 - 项目类别:
Studentship
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 30.47万 - 项目类别:
Collaborative R&D
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
- 批准号:
10073285 - 财政年份:2024
- 资助金额:
$ 30.47万 - 项目类别:
Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
- 批准号:
LP230100439 - 财政年份:2024
- 资助金额:
$ 30.47万 - 项目类别:
Linkage Projects
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 30.47万 - 项目类别:
Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
- 批准号:
EP/X033244/1 - 财政年份:2024
- 资助金额:
$ 30.47万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 30.47万 - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 30.47万 - 项目类别:
Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 30.47万 - 项目类别:
Continuing Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
- 批准号:
2346717 - 财政年份:2024
- 资助金额:
$ 30.47万 - 项目类别:
Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
- 批准号:
2342574 - 财政年份:2024
- 资助金额:
$ 30.47万 - 项目类别:
Standard Grant