A SYSTEMS APPROACH TO THE GENETIC STUDY OF ALCOHOL DEPENDENCE
酒精依赖性遗传研究的系统方法
基本信息
- 批准号:10187881
- 负责人:
- 金额:$ 39.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:3&apos Untranslated Regions5&apos Untranslated RegionsAlcohol dependenceAlgorithmsAmygdaloid structureAnimal ModelAreaAutopsyBiologicalBrainBrain imagingBrain regionChIP-seqChildhoodChronicClinicalComplexComputational BiologyDNADNA SequenceDataData SetDatabasesDiseaseElementsEnhancersEtiologyEvaluationFunctional Magnetic Resonance ImagingGene ExpressionGene TargetingGenesGeneticGenetic TranscriptionGenetic studyGenomicsGoalsHumanImageMeasuresMental disordersNatureNetwork-basedNeurocognitionNucleus AccumbensPathway interactionsPhiladelphiaPredispositionPrefrontal CortexPreventionRecurrenceRiskRoleServicesShort-Term MemorySingle Nucleotide PolymorphismStructureStudy modelsSystemSystems BiologyTalentsTestingTissue-Specific Gene ExpressionTissuesTwin StudiesUnited States National Institutes of HealthVariantWeightWorkbasebrain tissuecase controlcell typecohortdata resourcedesigndisabilityepigenomicsfallsgene discoverygenetic associationgenetic variantgenome wide association studygenome-wide analysisimaging geneticsimprovedinnovationinterestmultidisciplinaryneuroimagingnovelpromoterprotein protein interactionrisk varianttranscriptome sequencing
项目摘要
Alcohol dependence (AD), one of the leading causes of disability worldwide, is a chronic and recurrent
psychiatric illness. Twin studies have established a significant genetic contribution to AD susceptibility.
Variations in hundreds of genes likely contribute to the etiology of AD, with each genetic variant conferring only
a small increase in risk. Although numerous genes may contribute to the etiology of complex diseases, they
tend to fall into a smaller number of biological pathways. In addition, accumulating evidence suggests a large
portion of the risk variants for complex diseases are located in regulatory DNA sequences in disease-related
tissue or cell types. Studies leveraging already existing data may increase the power of gene discovery for
these disorders, which include AD. This proposal aims to employ a systems biology-based approach to identify
gene networks and regulatory variants underlying AD. To that end, we will perform integrated analysis of
genome-wide association studies (GWAS) of AD with brain-specific differential gene co-expression networks
(DCNs) and transcriptional regulatory networks (TRNs). Our approach to network construction will use brain
region-specific data, on gene expression and regulatory function. Our specific aims are: 1) Identify gene
subnetworks underlying AD through integrated analysis of GWAS with brain-specific DCNs; 2) Identify
regulatory risk variant sets through integrated analysis of GWAS with brain-specific TRNs; and 3) Evaluate the
function of identified gene subnetworks and regulatory variants using existing imaging genetics data. We have
assembled an outstanding multidisciplinary team with expertise in AD genetics, genomics, computational
biology, and neuroimaging. Our goal is to apply multidisciplinary and cutting-edge analytical strategies in the
service of advancing the field of AD genetics. The identification and characterization of risk genes and
regulatory variants would help improve our understanding of the biological mechanisms that underlie AD,
moving us closer to designing effective prevention and treatment for the disorder.
酒精依赖(Alcohol dependence,AD)是一种慢性、复发性疾病,
精神病双胞胎研究已经确定了AD易感性的重要遗传贡献。
数百个基因的变异可能有助于AD的病因学,每种遗传变异仅赋予AD
风险略有增加。虽然许多基因可能有助于复杂疾病的病因,
倾向于进入较少数量的生物学途径。此外,越来越多的证据表明,
复杂疾病的部分风险变异位于疾病相关基因的调控DNA序列中,
组织或细胞类型。利用现有数据的研究可能会增加基因发现的力量,
这些疾病,包括AD。该提案旨在采用基于系统生物学的方法来识别
基因网络和调节变异的基础AD。为此,我们将进行综合分析,
AD的全基因组关联研究(GWAS)与脑特异性差异基因共表达网络
(DCN)和转录调控网络(TRN)。我们构建网络的方法将使用大脑
基因表达和调控功能的区域特异性数据。我们的具体目标是:1)识别基因
通过对GWAS与脑特异性DCN的综合分析,确定AD的潜在子网络; 2)识别
通过GWAS与脑特异性TRN的综合分析来评估监管风险变体集;以及3)评估
使用现有的成像遗传学数据鉴定基因子网络和调控变体的功能。我们有
组建了一个杰出的多学科团队,他们在AD遗传学、基因组学、计算
生物学和神经影像学。我们的目标是应用多学科和尖端的分析战略,
为推进AD遗传学领域的发展服务。风险基因的识别和表征,
调节变异将有助于提高我们对AD生物学机制的理解,
使我们更接近于设计有效的预防和治疗疾病的方法。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Machine Learning Approach to Predicting Autism Risk Genes: Validation of Known Genes and Discovery of New Candidates.
- DOI:10.3389/fgene.2020.500064
- 发表时间:2020
- 期刊:
- 影响因子:3.7
- 作者:Lin Y;Afshar S;Rajadhyaksha AM;Potash JB;Han S
- 通讯作者:Han S
Identifying topologically associating domains and subdomains by Gaussian Mixture model And Proportion test.
- DOI:10.1038/s41467-017-00478-8
- 发表时间:2017-09-14
- 期刊:
- 影响因子:16.6
- 作者:Yu W;He B;Tan K
- 通讯作者:Tan K
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIZHONG HAN其他文献
SHIZHONG HAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHIZHONG HAN', 18)}}的其他基金
Integrative approaches to identification and interpretation of genes underlying psychiatric disorders
识别和解释精神疾病基因的综合方法
- 批准号:
10413142 - 财政年份:2020
- 资助金额:
$ 39.08万 - 项目类别:
Integrative approaches to identification and interpretation of genes underlying psychiatric disorders
识别和解释精神疾病基因的综合方法
- 批准号:
10630276 - 财政年份:2020
- 资助金额:
$ 39.08万 - 项目类别:
A systems approach to the genetic study of alcohol dependence
酒精依赖遗传研究的系统方法
- 批准号:
9237365 - 财政年份:2017
- 资助金额:
$ 39.08万 - 项目类别:
Functional methylomics approaches for schizophrenia in the frontal cortex and hippocampus
额叶皮层和海马区精神分裂症的功能甲基组学方法
- 批准号:
9891106 - 财政年份:2017
- 资助金额:
$ 39.08万 - 项目类别:
Fine mapping a gene sub-network underlying alcohol dependence
精细绘制酒精依赖背后的基因子网络
- 批准号:
9696026 - 财政年份:2014
- 资助金额:
$ 39.08万 - 项目类别:
Fine mapping a gene sub-network underlying alcohol dependence
精细绘制酒精依赖背后的基因子网络
- 批准号:
8674963 - 财政年份:2014
- 资助金额:
$ 39.08万 - 项目类别:
Fine mapping a gene sub-network underlying alcohol dependence
精细绘制酒精依赖背后的基因子网络
- 批准号:
8887090 - 财政年份:2014
- 资助金额:
$ 39.08万 - 项目类别:
相似海外基金
Impact of alternative polyadenylation of 3'-untranslated regions in the PI3K/AKT cascade on microRNA
PI3K/AKT 级联中 3-非翻译区的替代多聚腺苷酸化对 microRNA 的影响
- 批准号:
573541-2022 - 财政年份:2022
- 资助金额:
$ 39.08万 - 项目类别:
University Undergraduate Student Research Awards
How do untranslated regions of cannabinoid receptor type 1 mRNA determine receptor subcellular localisation and function?
1 型大麻素受体 mRNA 的非翻译区如何决定受体亚细胞定位和功能?
- 批准号:
2744317 - 财政年份:2022
- 资助金额:
$ 39.08万 - 项目类别:
Studentship
MICA:Synthetic untranslated regions for direct delivery of therapeutic mRNAs
MICA:用于直接递送治疗性 mRNA 的合成非翻译区
- 批准号:
MR/V010948/1 - 财政年份:2021
- 资助金额:
$ 39.08万 - 项目类别:
Research Grant
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
- 批准号:
10019570 - 财政年份:2019
- 资助金额:
$ 39.08万 - 项目类别:
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
- 批准号:
10223370 - 财政年份:2019
- 资助金额:
$ 39.08万 - 项目类别:
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
- 批准号:
10455108 - 财政年份:2019
- 资助金额:
$ 39.08万 - 项目类别:
Synergistic microRNA-binding sites, and 3' untranslated regions: a dialogue of silence
协同的 microRNA 结合位点和 3 非翻译区:沉默的对话
- 批准号:
255762 - 财政年份:2012
- 资助金额:
$ 39.08万 - 项目类别:
Operating Grants
Analysis of long untranslated regions in Nipah virus genome
尼帕病毒基因组长非翻译区分析
- 批准号:
20790351 - 财政年份:2008
- 资助金额:
$ 39.08万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Search for mRNA elements involved in the compatibility between 5' untranslated regions and coding regions in chloroplast translation
寻找参与叶绿体翻译中 5 非翻译区和编码区之间兼容性的 mRNA 元件
- 批准号:
19370021 - 财政年份:2007
- 资助金额:
$ 39.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Post-transcriptional Regulation of PPAR-g Expression by 5'-Untranslated Regions
5-非翻译区对 PPAR-g 表达的转录后调控
- 批准号:
7131841 - 财政年份:2006
- 资助金额:
$ 39.08万 - 项目类别: