CRCNS: US-French Research Proposal: Principles of Inference through Neural Dynamics
CRCNS:美法研究提案:通过神经动力学进行推理的原理
基本信息
- 批准号:10178116
- 负责人:
- 金额:$ 18.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-19 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AreaBayesian AnalysisBayesian PredictionBehaviorBehavioralBehavioral SymptomsBeliefBrainComplexCouplingDataDiagnosisDimensionsDiseaseElectrophysiology (science)EngineeringFoundationsFutureGoalsHealthInstructionLanguageLinkLow PrevalenceMathematicsMeasurementModelingMonkeysNeural Network SimulationNeurobiologyNeuronsPatternPopulationPrimatesProcessProductionRecurrenceReproductionResearch ProposalsSeriesShapesSilicon DioxideStructureSystemTestingTrainingTranslational ResearchUncertaintyWorkawakebrain dysfunctiondynamic systemexperimental studyflexibilityfrontal lobehigh dimensionalityin vivoinsightnetwork modelsnon-linear transformationnovelrecurrent neural networkrelating to nervous systemsuccesstheoriestime interval
项目摘要
Recurrent interactions between neurons generate dynamic patterns of activity that serve as a substrate for
behaviorally relevant computations. However, we do not yet have a principled framework for relating neural
dynamics to neural computations. We have recently synthesized a theory that explains how low-rank
recurrent neural networks may serve as a building block for computations. Our overarching goal is to integrate
insights from this theory with behavior and electrophysiology in awake, behaving monkeys to establish a
principled framework relating neural dynamics to neural computations. The project will start with reverse
engineering low-rank network models that capture cortical dynamics in simple timing tasks. We then move
systematically toward progressively higher rank network models that can perform timing tasks with
progressively more sophisticated computational demands such as probabilistic inference of time intervals.
We aim to create models that simultaneously succeed in performing task-relevant computations (i.e.,
behavior) and emulate cortical dynamics recorded in monkeys performing those tasks. We will use this
iterative process to establish a principled framework relating neural dynamics to neural computations
underlying inference. Finally, we will put this framework to test using a novel task that demands an
unprecedented level of computational flexibility.
RELEVANCE (See instructions):
It has become increasingly apparent that the neurobiology of behavior in health and disease has to be
probed at the level of populations of neurons. However, we do not yet have a rigorous and quantitative
language for linking population neural activity to behavior. Our work combines primate electrophysiology
with neural network modeling and aims to develop such a language through the mathematics of dynamical
systems. The results hold promise for future translational research to diagnose behavioral symptoms of
brain dysfunction in terms of their computational modules and the dynamic patterns of activity that support
those modules.
神经元之间的反复相互作用产生动态的活动模式,这些活动模式可以作为神经元之间相互作用的基础。
行为相关的计算。然而,我们还没有一个原则性的框架,
动力学到神经计算我们最近综合了一个理论,解释了低级别
递归神经网络可以用作计算的构建块。我们的首要目标是整合
从这一理论的见解与行为和电生理学在清醒,行为猴子建立一个
将神经动力学与神经计算联系起来的原则框架。该项目将从反向开始
设计低等级网络模型,在简单的计时任务中捕获皮层动力学。然后我们移动
系统地向更高等级的网络模型发展,可以执行定时任务,
逐渐地更复杂的计算需求,诸如时间间隔的概率推断。
我们的目标是创建同时成功执行任务相关计算的模型(即,
行为),并模仿执行这些任务的猴子记录的皮质动力学。我们将使用这个
建立将神经动力学与神经计算相关联的原则框架的迭代过程
基本推理最后,我们将使用一个新的任务来测试这个框架,
前所未有的计算灵活性。
相关性(参见说明):
越来越明显的是,健康和疾病中行为的神经生物学必须是
在神经元群体的水平上探测。然而,我们还没有一个严格的和定量的
将群体神经活动与行为联系起来的语言。我们的工作结合了灵长类动物的电生理学
神经网络建模,旨在通过动态数学来开发这样一种语言。
系统.这些结果为未来的转化研究提供了希望,以诊断行为症状,
大脑的计算模块和动态的活动模式,
这些模块。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehrdad Jazayeri其他文献
Mehrdad Jazayeri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mehrdad Jazayeri', 18)}}的其他基金
Sensorimotor learning through adjustments of cortical dynamics
通过调节皮质动力学进行感觉运动学习
- 批准号:
10321910 - 财政年份:2021
- 资助金额:
$ 18.47万 - 项目类别:
Sensorimotor learning through adjustments of cortical dynamics
通过调节皮质动力学进行感觉运动学习
- 批准号:
10539258 - 财政年份:2021
- 资助金额:
$ 18.47万 - 项目类别:
CRCNS: US-French Research Proposal: Principles of Inference through Neural Dynamics
CRCNS:美法研究提案:通过神经动力学进行推理的原理
- 批准号:
9916986 - 财政年份:2019
- 资助金额:
$ 18.47万 - 项目类别:
CRCNS: US-French Research Proposal: Principles of Inference through Neural Dynamics
CRCNS:美法研究提案:通过神经动力学进行推理的原理
- 批准号:
10634598 - 财政年份:2019
- 资助金额:
$ 18.47万 - 项目类别:
Neural mechanisms of timing in the oculomotor system
动眼神经系统计时的神经机制
- 批准号:
8828815 - 财政年份:2014
- 资助金额:
$ 18.47万 - 项目类别:
Neural mechanisms of timing in the oculomotor system
动眼神经系统计时的神经机制
- 批准号:
8694366 - 财政年份:2014
- 资助金额:
$ 18.47万 - 项目类别:
Neural mechanisms of timing in the oculomotor system
动眼神经系统计时的神经机制
- 批准号:
9247851 - 财政年份:2014
- 资助金额:
$ 18.47万 - 项目类别:
相似海外基金
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
- 批准号:
2311354 - 财政年份:2023
- 资助金额:
$ 18.47万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210282 - 财政年份:2022
- 资助金额:
$ 18.47万 - 项目类别:
Standard Grant
Bayesian analysis of generative models of sequence insertion events in HIV-1 envelope glycoproteins
HIV-1 包膜糖蛋白序列插入事件生成模型的贝叶斯分析
- 批准号:
574483-2022 - 财政年份:2022
- 资助金额:
$ 18.47万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210280 - 财政年份:2022
- 资助金额:
$ 18.47万 - 项目类别:
Standard Grant
World Meeting of the International Society for Bayesian Analysis 2022
2022 年国际贝叶斯分析学会世界会议
- 批准号:
2206934 - 财政年份:2022
- 资助金额:
$ 18.47万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210281 - 财政年份:2022
- 资助金额:
$ 18.47万 - 项目类别:
Standard Grant
Default Bayesian Analysis of Spatial Data
空间数据的默认贝叶斯分析
- 批准号:
2113375 - 财政年份:2021
- 资助金额:
$ 18.47万 - 项目类别:
Standard Grant
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10701881 - 财政年份:2021
- 资助金额:
$ 18.47万 - 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10298072 - 财政年份:2021
- 资助金额:
$ 18.47万 - 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10473754 - 财政年份:2021
- 资助金额:
$ 18.47万 - 项目类别: