Skeletal Muscle Engineering for the Craniofacial Region
颅面区域骨骼肌工程
基本信息
- 批准号:10185671
- 负责人:
- 金额:$ 41.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-03 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAmericanAppearanceAreaAutologousBeautyBiologicalBiological ModelsBiomedical EngineeringBiomimeticsBioreactorsBone TissueCell Differentiation processCell ProliferationCellsCharacteristicsCheek structureClimactericCosmeticsCraniofacial AbnormalitiesCustomDefectDevelopmentElementsEngineeringExtracellular MatrixFaceFailureFamily suidaeFatty acid glycerol estersFillerFinancial HardshipGDF8 geneGoalsGrowth FactorHealthcareHumanHuman bodyHypertrophyImplantIn VitroIndividualInjuryInsulin AntagonistsInsulin-Like Growth Factor IKnowledgeMasseter MuscleMechanical StimulationMetabolicMorphologyMusMuscleMuscle CellsMuscle DevelopmentMuscle FibersMuscle satellite cellNatural regenerationOutcomePatientsPopulationPrintingProceduresPropertyQuality of lifeResearchResourcesSkeletal MuscleSocietiesStructureSupplementationSurgeonSurgical FlapsTechnologyTestingTimeTissue EngineeringTissuesVisionWorkbarium chloridecell behaviorcraniofacialcraniofacial tissueexpectationfacial disfigurementimplantationimprovedin vivoinnovationmechanical loadmechanical propertiesmuscle engineeringmuscle formmuscle regenerationmuscular structurenovelpatient subsetspersonalized approachporcine modelpostnatalquadriceps musclereconstructionregenerativerepairedresponserestorationsatellite cellscaffoldskeletalsoft tissuestemsubcutaneoustissue reconstructiontranslational model
项目摘要
PROJECT SUMMARY/ABSTRACT
Facial disfigurement can have devastating effects on one’s quality of life. Approximately 0.26 million Americans
per annum have reconstructive procedures, such as the use of tissue flaps, to correct congenital and acquired
craniofacial defects. Management of large volumetric craniofacial muscle tissue defects remains a challenge.
Up to one quarter of patients have repeat procedures due to flap failure, tissue rejection and limited availability
of tissue; and there remains a subset of patients for whom treatment completely fails resulting in continued
facial disfigurement, financial burden and challenges with societal integration. The ability to generate
craniofacial muscle tissue containing the patient’s own cells would provide a more predictable, life-changing
treatment for a serious problem. Previous work has demonstrated the importance of craniofacial muscle-
derived cells and scaffolds for engineering the craniofacial skeletal muscles.
The project proposes to engineer craniofacial muscle tissue by seeding 3-D printed biomimetic scaffolds with
porcine craniofacial muscle-derived cells. The goals are to (1) generate new knowledge on the use of
craniofacial muscle-derived cell populations for the formation of muscle tissue; (2) produce 3-D biomimetic
scaffolds to support craniofacial muscle development; (3) bioengineer craniofacial muscle tissue for
implantation. The vision is that permanent restoration of craniofacial soft tissue defects can be achieved by
implantation of precision-engineered autologous craniofacial skeletal muscle tissue. The hypothesis is that
successful craniofacial muscle tissue engineering applications will incorporate autologous craniofacial skeletal
muscle-derived cells, 3-D printed biomimetic scaffolds, application of mechanical load and insulin-like growth
factor 1 (IGF-1), a growth factor important for muscle cell proliferation and differentiation. The approach is to
enrich porcine craniofacial muscle-derived cell populations with muscle stem cells (satellite cells) responsible
for regeneration. The cells will be seeded into 3-D printed biomimetic scaffolds and subjected to load and IGF-
1 to improve regeneration and promote muscle fiber hypertrophy leading to a tissue suitable for implantation
into the craniofacial region. Aim 1 is to produce 3-D printed biomimetic scaffolds and assess response of an
enriched porcine craniofacial muscle-derived cell population within the scaffolds. Aim 2 is to determine
response of engineered porcine craniofacial skeletal muscle tissue to mechanical stimulation and IGF-1
delivered within customized bioreactors. Aim 3 is to determine the regenerative capability of engineered
porcine craniofacial skeletal muscle tissue in vitro and in vivo. This project ultimately aims to produce a
functional craniofacial tissue for restoration of craniofacial soft tissue defects through the combination of three
innovative elements: (1) craniofacial muscle-derived cell populations; (2) 3-D printed biomimetic scaffolds; (3)
application of external factors (mechanical load and IGF-1). The outcomes of the proposed research will
broadly impact skeletal muscle engineering applications for the entire human body.
项目概要/摘要
面部畸形会对一个人的生活质量产生毁灭性影响。大约 26 万美国人
每年进行重建手术,例如使用组织瓣,以纠正先天性和后天性
颅面缺陷。大体积颅面肌肉组织缺陷的处理仍然是一个挑战。
由于皮瓣失败、组织排斥和可用性有限,多达四分之一的患者需要重复手术
组织;仍然有一小部分患者的治疗完全失败,导致持续的
面部畸形、经济负担和社会融合的挑战。生成能力
含有患者自身细胞的颅面肌组织将提供更可预测的、改变生活的
治疗严重问题。先前的工作已经证明了颅面肌肉的重要性
用于工程颅面骨骼肌的衍生细胞和支架。
该项目建议通过在 3D 打印仿生支架上植入 3D 打印的仿生支架来设计颅面肌肉组织
猪颅面肌来源的细胞。目标是(1)产生关于使用的新知识
用于形成肌肉组织的颅面肌来源的细胞群; (2) 制作3D仿生
支持颅面肌肉发育的支架; (3)生物工程颅面肌组织
植入。愿景是通过以下方式实现颅面软组织缺损的永久修复:
植入精密设计的自体颅面骨骼肌组织。假设是
成功的颅面肌组织工程应用将结合自体颅面骨骼
肌肉源性细胞、3D 打印仿生支架、机械负载的应用和胰岛素样生长
因子 1 (IGF-1),一种对肌肉细胞增殖和分化很重要的生长因子。方法是
丰富猪颅面肌来源的细胞群,其中肌肉干细胞(卫星细胞)负责
用于再生。这些细胞将被植入 3D 打印的仿生支架中,并承受负载和 IGF-
1 改善再生并促进肌纤维肥大,形成适合植入的组织
进入颅面部区域。目标 1 是生产 3D 打印仿生支架并评估
支架内富集的猪颅面肌来源的细胞群。目标 2 是确定
工程猪颅面骨骼肌组织对机械刺激和 IGF-1 的反应
在定制的生物反应器中交付。目标 3 是确定工程的再生能力
猪颅面骨骼肌组织的体外和体内。该项目的最终目标是生产一个
功能性颅面部组织通过三者结合修复颅面部软组织缺损
创新要素:(1)颅面肌源性细胞群; (2) 3D打印仿生支架; (3)
外部因素(机械负荷和 IGF-1)的应用。拟议研究的结果将
广泛影响整个人体的骨骼肌工程应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rishma Shah其他文献
Rishma Shah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rishma Shah', 18)}}的其他基金
Skeletal Muscle Engineering for the Craniofacial Region
颅面区域骨骼肌工程
- 批准号:
10625375 - 财政年份:2021
- 资助金额:
$ 41.62万 - 项目类别:
Skeletal Muscle Engineering for the Craniofacial Region
颅面区域骨骼肌工程
- 批准号:
10416015 - 财政年份:2021
- 资助金额:
$ 41.62万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 41.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 41.62万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 41.62万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 41.62万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 41.62万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 41.62万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 41.62万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 41.62万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 41.62万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 41.62万 - 项目类别:
Standard Grant














{{item.name}}会员




