Preserving Epithelial Barrier Integrity in Ventilator-Induced Lung Injury
在呼吸机引起的肺损伤中保持上皮屏障的完整性
基本信息
- 批准号:10186793
- 负责人:
- 金额:$ 63.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-10 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAcute Lung InjuryAddressAdult Respiratory Distress SyndromeAlveolarAlveolusAnatomyAnimal ModelAppearanceBiological MarkersBiological ModelsBiophysical ProcessBioreactorsBlood gasBronchoalveolar Lavage FluidCell DeathComputer ModelsCritical CareDataDevelopmentDiagnosisDrug TargetingElementsEndotheliumEpithelialEpithelial CellsEventFamily suidaeGoalsHistologyHumanImpairmentIn VitroIndividualInjuryIntensive Care UnitsInterruptionInterventionLeadLifeLiquid substanceLungLung ComplianceMechanical StressMechanical ventilationMechanicsMedicineModelingMusPathogenesisPatientsPerforationPeriodicityPharmacologic SubstancePlasmaPrimary PreventionProcessProteinsRecording of previous eventsRecoveryRegimenResearchRiskStressStretchingStructure of parenchyma of lungStudy modelsSupportive careSurface TensionTechniquesTestingTight JunctionsTimeTissuesTubeVentilator-induced lung injuryVolutraumaairway epitheliumatelectraumaclinically relevantdesignevent cycleimprovedin vivolung injurymonolayermortalitymulti-scale modelingpatient populationpersonalized approachpredictive modelingpreservationpreventpulmonary functionrate of changerecruitrepairedsurfactantsurfactant functiontissue stresstoolventilation
项目摘要
PROJECT SUMMARY
The distressingly high mortality from acute respiratory distress syndrome (ARDS) represents a dramatic loss of
quality human life-years. No medicines have yet been developed that treat ARDS, so management remains
purely supportive as patients are nursed through their illness in a critical care setting. A key component of this
management involves mechanical ventilation. Unfortunately, the stresses and strains of mechanical ventilation
can further damage already injured lung tissues, causing lung compliance to decrease and the stresses and
strains of mechanical ventilation to increase commensurately. This, in turn, worsens tissue damage in a vicious
cycle that is often ultimately fatal. Accordingly, the central premise of this proposal is that managing ARDS
requires, above all else, the minimization of VILI. Our prior studies lead to the over-arching hypothesis that the
development of ARDS occurs only once repetitive recruitment and derecruitment (RecDer) of lung units
initiates an epithelial leak that allows fluid and proteins to begin to accumulate in the airspaces. The
consequences of allowing this process to start are dire; surfactant function becomes impaired, surface tension
and tissue stresses increase, and the leak worsens in a vicious cycle that accelerates indefinitely. Once
underway, this process is difficult to reverse and is exacerbated by over-distension (OD) of the lung tissues,
making its avoidance paramount for patients at risk of developing ARDS. Our goal is to comprehensively test
this hypothesis both in vitro and in vivo in a range of three relevant model systems: 1) using biofluid mechanics
studies we will investigate fundamental interactions that may lead to RecDer, and at the cellular level in vitro
we will determine how both OD of lung tissue and repetitive RecDer of lung airspaces act individually and
synergistically to damage the airway epithelium in epithelial cell monolayers grown on the inside of compliant
tubes subjected to stretch and/or liquid bubble passage, respectively, 2) at the whole lung level in vivo we will
determine how over-distension and RecDer lead to leak of proteinaceous fluid into the lung airspaces and
cause derangements in lung mechanics and 3) we will determine how VILI can be minimized in a clinically
relevant porcine surfactant deactivation model of heterogeneous ARDS subjected to a variety of modes of
mechanical ventilation that apply differing relative degrees of tissue over-distention and RecDer. The data
collected in Aims 1 and 2 will inform the development of a computational model that predicts how VILI
develops over time as a result of the epithelial damage caused by RecDer and the exacerbating influences of
overdistension. The model will be tested under clinically relevant conditions in Aim 3. These studies will
establish the pathophysiologic understanding upon which personalized approaches to mechanical ventilation
that minimize VILI can be developed for individual ARDS patients.
项目摘要
急性呼吸窘迫综合征(ARDS)的死亡率高得令人沮丧,这意味着
人的生命质量。目前还没有开发出治疗ARDS的药物,
纯粹的支持,因为病人在重症监护环境中接受护理。其中一个关键组成部分是
管理涉及机械通气。不幸的是,机械通气的压力和应变
可进一步损伤已经受损的肺组织,导致肺顺应性降低,
机械通气的压力急剧增加。这反过来又会在恶性循环中破坏组织。
这种循环往往最终是致命的。因此,本建议的中心前提是,
最重要的是,需要最小化VILI。我们先前的研究导致了过度假设,
ARDS的发展仅发生一次肺单位的重复复张和去复张(RecDer)
引起上皮渗漏,使液体和蛋白质开始在空气中积聚。的
允许这一过程开始的后果是可怕的;表面活性剂功能受损,表面张力
并且组织应力增加,并且泄漏在恶性循环中无限加速。一旦
在进行中,该过程难以逆转并且由于肺组织的过度扩张(OD)而加剧,
这使得对于有发展成ARDS风险的患者来说避免它是至关重要的。我们的目标是全面测试
这一假设在体外和体内在一系列三个相关的模型系统:1)使用生物流体力学
我们将研究可能导致RecDer的基本相互作用,并在体外细胞水平上进行研究。
我们将确定肺组织的OD和肺空间的重复RecDer如何单独起作用,
协同地损伤在顺应性的内部上生长的上皮细胞单层中的气道上皮
分别经受拉伸和/或液体气泡通过的管,2)在体内的整个肺水平,我们将
确定过度扩张和RecDer如何导致蛋白质液体泄漏到肺气隙中,
导致肺力学紊乱,3)我们将确定如何在临床上最大限度地减少VILI,
相关的猪表面活性剂失活模型的异质性ARDS进行了各种模式的
机械通气应用不同的相对程度的组织过度扩张和RecDer。数据
目标1和2中收集的信息将为预测VILI如何
随着时间的推移,由于RecDer引起的上皮损伤以及
过度膨胀将在目标3中的临床相关条件下对模型进行测试。这些研究将
建立病理生理学的理解,
可以为个体ARDS患者开发最小化VILI的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason HT Bates其他文献
Jason HT Bates的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason HT Bates', 18)}}的其他基金
Mathematical and Computational Predictive Modeling Core
数学和计算预测建模核心
- 批准号:
10021010 - 财政年份:2018
- 资助金额:
$ 63.3万 - 项目类别:
Mathematical and Computational Predictive Modeling Core
数学和计算预测建模核心
- 批准号:
10256815 - 财政年份:2018
- 资助金额:
$ 63.3万 - 项目类别:
Non-Allergic Late-Onset Asthma of Obesity: Pathophysiology and Therapy
肥胖引起的非过敏性迟发型哮喘:病理生理学和治疗
- 批准号:
9243305 - 财政年份:2016
- 资助金额:
$ 63.3万 - 项目类别:
Personalized Mechanical Ventilation for the Injured Lung
针对受损肺部的个性化机械通气
- 批准号:
9026498 - 财政年份:2014
- 资助金额:
$ 63.3万 - 项目类别:
Personalized Mechanical Ventilation for the Injured Lung
针对受损肺部的个性化机械通气
- 批准号:
9232202 - 财政年份:2014
- 资助金额:
$ 63.3万 - 项目类别:
Personalized Mechanical Ventilation for the Injured Lung
针对受损肺部的个性化机械通气
- 批准号:
8766263 - 财政年份:2014
- 资助金额:
$ 63.3万 - 项目类别:
A multi-scale approach to airway hyperresponsiveness: from molecule to organ
气道高反应性的多尺度方法:从分子到器官
- 批准号:
8502325 - 财政年份:2010
- 资助金额:
$ 63.3万 - 项目类别:
A multi-scale approach to airway hyperresponsiveness: from molecule to organ
气道高反应性的多尺度方法:从分子到器官
- 批准号:
8135440 - 财政年份:2010
- 资助金额:
$ 63.3万 - 项目类别:
A multi-scale approach to airway hyperresponsiveness: from molecule to organ
气道高反应性的多尺度方法:从分子到器官
- 批准号:
8322649 - 财政年份:2010
- 资助金额:
$ 63.3万 - 项目类别:
A multi-scale approach to airway hyperresponsiveness: from molecule to organ
气道高反应性的多尺度方法:从分子到器官
- 批准号:
7932703 - 财政年份:2010
- 资助金额:
$ 63.3万 - 项目类别:
相似海外基金
Combinatorial cytokine-coated macrophages for targeted immunomodulation in acute lung injury
组合细胞因子包被的巨噬细胞用于急性肺损伤的靶向免疫调节
- 批准号:
10648387 - 财政年份:2023
- 资助金额:
$ 63.3万 - 项目类别:
Lung epithelial cell-derived C3 in acute lung injury
肺上皮细胞衍生的 C3 在急性肺损伤中的作用
- 批准号:
10720687 - 财政年份:2023
- 资助金额:
$ 63.3万 - 项目类别:
Examining the role of TRMT1 and tRNA methylation in acute lung injury and ARDS
检查 TRMT1 和 tRNA 甲基化在急性肺损伤和 ARDS 中的作用
- 批准号:
10719249 - 财政年份:2023
- 资助金额:
$ 63.3万 - 项目类别:
Inducible HMGB1 antagonist for viral-induced acute lung injury.
诱导型 HMGB1 拮抗剂,用于治疗病毒引起的急性肺损伤。
- 批准号:
10591804 - 财政年份:2023
- 资助金额:
$ 63.3万 - 项目类别:
MAP2K1 AND MAP2K2 IN ACUTE LUNG INJURY AND RESOLUTION
MAP2K1 和 MAP2K2 在急性肺损伤中的作用及缓解
- 批准号:
10741574 - 财政年份:2023
- 资助金额:
$ 63.3万 - 项目类别:
Development of a new treatment for COVID-19-related acute lung injury targeting the microbiota-derived peptide corisin
针对微生物群衍生肽 corisin 开发治疗 COVID-19 相关急性肺损伤的新疗法
- 批准号:
23K07651 - 财政年份:2023
- 资助金额:
$ 63.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing immunovascular mechanobiology in pneumonia-associated acute lung injury at the single capillary level
在单毛细血管水平探讨肺炎相关急性肺损伤的免疫血管力学生物学
- 批准号:
10679944 - 财政年份:2023
- 资助金额:
$ 63.3万 - 项目类别:
The amyloid precursor protein protects against acute lung injury
淀粉样前体蛋白可预防急性肺损伤
- 批准号:
10575258 - 财政年份:2023
- 资助金额:
$ 63.3万 - 项目类别:
Role of macrophages and miRNA in regulating lung macrophage polarization and lung pathogenesis during respiratory virus-induced acute lung injury in normal and diabetic Syrian hamsters.
正常和糖尿病叙利亚仓鼠呼吸道病毒引起的急性肺损伤期间巨噬细胞和 miRNA 在调节肺巨噬细胞极化和肺部发病机制中的作用。
- 批准号:
10701207 - 财政年份:2023
- 资助金额:
$ 63.3万 - 项目类别:
Identification of novel phenotypes of acute lung injury using multimodal longitudinal data
使用多模态纵向数据识别急性肺损伤的新表型
- 批准号:
MR/Y000404/1 - 财政年份:2023
- 资助金额:
$ 63.3万 - 项目类别:
Fellowship














{{item.name}}会员




