A multi-scale approach to airway hyperresponsiveness: from molecule to organ
气道高反应性的多尺度方法:从分子到器官
基本信息
- 批准号:8135440
- 负责人:
- 金额:$ 89.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingActinsAddressAerosolsAffectAgonistAirAllergic inflammationAsthmaBehaviorBindingBiomedical ResearchBreathingBronchoconstrictionCaliberCellsCharacteristicsClinicalCollaborationsCommunitiesComplexComputational algorithmComputer SimulationContractile ProteinsContractsDataDevelopmentDyspneaEconomic InflationEnvironmental air flowEquilibriumEventFunctional disorderGenerationsGoalsHumanITPR1 geneIndividualInflammationInflammatoryInositolInvestigationKineticsLeadLengthLifeLinkLungLung diseasesMaintenanceMeasurementMeasuresMechanicsMediatingMethodsModelingMolecularMorphologyMusMuscleMuscle ContractionMyosin ATPaseMyosin Light Chain KinaseOrganOutcomePatientsPhysiologicalProcessProductionPropertyProtein DephosphorylationPublic HealthRegulationResearchResearch PersonnelRespiratory physiologyRoleRyanodine ReceptorsSeriesSignal TransductionSimulateSliceSmooth Muscle MyocytesSolutionsStimulusStressStretchingStructure of parenchyma of lungSystemTestingTherapeuticTherapeutic InterventionThin FilamentTimeTimeLineTissue ModelTissuesTranslatingTreesWorkairborne allergenairway hyperresponsivenessasthmatic patientbaseclinical phenotypecomplex biological systemscomputerized toolsconstrictionelectric impedancehuman tissueimprovedintravenous injectionlung basal segmentlung volumemathematical modelmechanical behaviormethacholinemodel developmentmouse modelmulti-scale modelingmyosin phosphataseparticleprotein activationprotein expressionprototypepublic health relevanceresearch studyrespiratory smooth muscleresponsesurfactanttheories
项目摘要
DESCRIPTION (provided by applicant): Asthmatic patients respond to inhaled stimuli with an excessive reduction in airway caliber, a phenomenon known as airway hyperresponsiveness (AHR). AHR is highly complex and reflects multiple processes that manifest over a large range of length and time scales. At one extreme, molecular interactions determine the force generated by airway smooth muscle (ASM). At the other extreme, the spatially distributed constriction of the many branches of the airway tree lead to persistent difficulties in breathing. Similarly, conventional asthma therapies are pharmacological and operate at the molecular level, while clinical outcomes are evaluated in terms of global lung function. These extremes are linked by numerous events operating over intermediate scales of length and time. Thus, AHR is an emergent phenomenon that is extremely challenging to understand in its entirety. This in turn limits our understanding of asthma and confounds the interpretation of experimental studies that each can address physiological mechanisms over only a very limited range of scales. Our solution to this conundrum has been to construct a modular multi-scale mathematical model that links and integrates experimental data from multiple scales. The current manifestation of this model, which is the result of a multi-disciplinary collaboration between 5 investigators with complementary experimental and mathematical expertise, incorporates force production by actin-myosin dynamics, force regulation by Ca2+ dynamics, force-dependent tissue deformation, and airway constriction. While this model demonstrates feasibility for our project and, most importantly, establishes computational algorithms for modeling over a wide range of scales, it currently represents only an initial frame-work. Consequently, in this proposal, we intend to develop our unique multi-scale computational model of the lung to the point where it can be used to make realistic predictions of bronchoconstriction, thereby allowing us to identify those pathophysiologic mechanisms having the greatest impact on AHR. We will include in this extended model: 1) at the molecular level, the kinetics of the contractile proteins during regular cross-bridge cycling and during the latch-state and their contributions to force production, 2) at the cellular level, the Ca2+ signaling mechanisms that regulate ASM force production, 3) at the tissue level, the detailed balance of forces between contracting ASM and the opposing viscoelastic tissue that determine airway narrowing, and 4) at the organ level, the topographic distribution of ASM contraction dynamics that determine changes in mechanical impedance in the normal and hyperresponsive lung. By extensive iteration between theory and experimentation, the modules of the model will be individually validated to identify the key parameters that link between successive scales. The model will then be used to make testable predictions of molecular, cellular and tissue behavior. This will improve our understanding of the link between cellular pathophysiology and the clinical phenotype in asthma.
PUBLIC HEALTH RELEVANCE: Many individuals worldwide suffer from asthma, an inflammatory lung disease characterized by excessive constriction of the airways. This excessive constriction, termed airway hyperresponsiveness (AHR) can be life- threatening and is the result of an extremely complicated sequence of events initiated at the molecular level by airborne allergens or other stimuli, and culminating at the organ level with difficulty in breathing. The objective of this research is to understand the sequence of events leading to AHR by using a mathematical model to integrate data from experimental studies that by themselves can only elucidate the details of each step. With this multi-scale approach, we will be able to identify key events in AHR that may serve as targets for therapeutic intervention.
描述(由申请人提供):哮喘患者对吸入的刺激反应,气道口径过多降低,这是一种称为气道高反应性(AHR)的现象。 AHR是高度复杂的,反映了在大量长度和时间尺度上表现出的多个过程。在一个极端,分子相互作用决定了气道平滑肌产生的力(ASM)。在另一个极端上,气道树的许多分支的空间分布狭窄导致呼吸困难。同样,常规的哮喘治疗是药理,并且在分子水平上运作,而临床结果则根据全球肺功能进行评估。这些极端是通过长度和时间中间尺度上运行的许多事件的联系。因此,AHR是一种新兴的现象,完全理解其全部是极具挑战性的。反过来,这又限制了我们对哮喘的理解,并混淆了实验研究的解释,这些解释只能在非常有限的范围内解决生理机制。我们对这个难题的解决方案是构建一个模块化的多尺度数学模型,该模型将来自多个尺度的实验数据链接和集成。该模型的当前表现是5位具有互补实验和数学专业知识的研究者之间的多学科合作的结果,它结合了肌动蛋白 - 肌球蛋白动力学的力量,CA2+动力学的力调节,依赖力的组织变形和气道限制。尽管该模型证明了我们项目的可行性,最重要的是,建立了用于建模在广泛尺度上的计算算法,但目前仅代表初始帧工作。因此,在此提案中,我们打算开发我们的肺部独特多规模计算模型,以便可以用来对支气管收缩做出现实的预测,从而使我们能够识别那些对AHR产生最大影响的病理生理机制。 We will include in this extended model: 1) at the molecular level, the kinetics of the contractile proteins during regular cross-bridge cycling and during the latch-state and their contributions to force production, 2) at the cellular level, the Ca2+ signaling mechanisms that regulate ASM force production, 3) at the tissue level, the detailed balance of forces between contracting ASM and the opposing viscoelastic tissue that determine airway narrowing, and 4)在器官水平上,ASM收缩动力学的地形分布确定了正常和高反应性肺中机械阻抗的变化。通过理论和实验之间的广泛迭代,将对模型的模块进行单独验证,以确定连续尺度之间链接的关键参数。然后,该模型将用于对分子,细胞和组织行为进行可检验的预测。这将提高我们对哮喘中细胞病理生理学与临床表型之间联系的理解。
公共卫生相关性:全世界许多人患有哮喘,这是一种炎症性肺部疾病,其特征是气道过度收缩。这种过度的收缩,称为气道高反应性(AHR)可能是生命的威胁,是由于空气寄生过敏原或其他刺激在分子水平上引发的极其复杂的事件的结果,并在器官水平上以难度在器官水平上达到高潮。这项研究的目的是通过使用数学模型来整合实验研究的数据,理解导致AHR的事件的顺序,这些数据本身只能阐明每个步骤的细节。通过这种多尺度方法,我们将能够确定AHR中可能充当治疗干预目标的关键事件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason HT Bates其他文献
Jason HT Bates的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason HT Bates', 18)}}的其他基金
Mathematical and Computational Predictive Modeling Core
数学和计算预测建模核心
- 批准号:
10021010 - 财政年份:2018
- 资助金额:
$ 89.84万 - 项目类别:
Preserving Epithelial Barrier Integrity in Ventilator-Induced Lung Injury
在呼吸机引起的肺损伤中保持上皮屏障的完整性
- 批准号:
10186793 - 财政年份:2018
- 资助金额:
$ 89.84万 - 项目类别:
Mathematical and Computational Predictive Modeling Core
数学和计算预测建模核心
- 批准号:
10256815 - 财政年份:2018
- 资助金额:
$ 89.84万 - 项目类别:
Non-Allergic Late-Onset Asthma of Obesity: Pathophysiology and Therapy
肥胖引起的非过敏性迟发型哮喘:病理生理学和治疗
- 批准号:
9243305 - 财政年份:2016
- 资助金额:
$ 89.84万 - 项目类别:
Personalized Mechanical Ventilation for the Injured Lung
针对受损肺部的个性化机械通气
- 批准号:
9026498 - 财政年份:2014
- 资助金额:
$ 89.84万 - 项目类别:
Personalized Mechanical Ventilation for the Injured Lung
针对受损肺部的个性化机械通气
- 批准号:
9232202 - 财政年份:2014
- 资助金额:
$ 89.84万 - 项目类别:
Personalized Mechanical Ventilation for the Injured Lung
针对受损肺部的个性化机械通气
- 批准号:
8766263 - 财政年份:2014
- 资助金额:
$ 89.84万 - 项目类别:
A multi-scale approach to airway hyperresponsiveness: from molecule to organ
气道高反应性的多尺度方法:从分子到器官
- 批准号:
8502325 - 财政年份:2010
- 资助金额:
$ 89.84万 - 项目类别:
A multi-scale approach to airway hyperresponsiveness: from molecule to organ
气道高反应性的多尺度方法:从分子到器官
- 批准号:
8322649 - 财政年份:2010
- 资助金额:
$ 89.84万 - 项目类别:
A multi-scale approach to airway hyperresponsiveness: from molecule to organ
气道高反应性的多尺度方法:从分子到器官
- 批准号:
7932703 - 财政年份:2010
- 资助金额:
$ 89.84万 - 项目类别:
相似海外基金
Structural basis of the super-relaxed state in human cardiac muscle
人体心肌超松弛状态的结构基础
- 批准号:
10634701 - 财政年份:2022
- 资助金额:
$ 89.84万 - 项目类别:
Structural basis of the super-relaxed state in human cardiac muscle
人体心肌超松弛状态的结构基础
- 批准号:
10502114 - 财政年份:2022
- 资助金额:
$ 89.84万 - 项目类别:
Hyaluronan as a mediator of intrauterine growth restriction-induced islet dysfunction in type 2 diabetes
透明质酸作为 2 型糖尿病宫内生长受限诱导的胰岛功能障碍的介质
- 批准号:
10303293 - 财政年份:2021
- 资助金额:
$ 89.84万 - 项目类别:
Hyaluronan as a mediator of intrauterine growth restriction-induced islet dysfunction in type 2 diabetes
透明质酸作为 2 型糖尿病宫内生长受限诱导的胰岛功能障碍的介质
- 批准号:
10436997 - 财政年份:2021
- 资助金额:
$ 89.84万 - 项目类别: