Accurate prediction of neutralization capacity from deep mining of SARS-CoV-2 serology
深度挖掘SARS-CoV-2血清学,准确预测中和能力
基本信息
- 批准号:10195613
- 负责人:
- 金额:$ 46.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-19 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAlgorithmsAntibodiesAntigensBiological AssayBlood specimenCOVID-19 pandemicCellsCessation of lifeClinicalDataData SetDevelopmentEnvironmentEnzyme-Linked Immunosorbent AssayEpitopesExposure toFDA approvedFlow CytometryGoalsGoldHealthHospitalsImmune responseImmunityImmunoglobulin AImmunoglobulin GImmunoglobulin MInfectionMethodsMicrospheresMiningNucleocapsid ProteinsPositioning AttributeProtein EngineeringReactionReporterReproducibilitySamplingSeriesSerologic testsSerumSurfaceTechnologyTestingTherapeuticTimeTrainingTransfusionVaccinesVariantViralViral AntigensViral MarkersVirusdata miningdensitydesignhigh risk populationimprovedinnovationlearning strategymultidimensional datamutantneutralizing antibodypathogenprediction algorithmpredictive markerprofiles in patientsrapid techniquereceptor bindingresponseskillssupervised learningvaccine developmentvaccine efficacyvirology
项目摘要
ABSTRACT
The goal of this project is to establish an accurate and sensitive method for predicting the neutralization
capacity against SARS-CoV-2 of serum samples by deep mining of antibody profiles. The COVID-19 pandemic
remains a global threat with nearly seven million cases and 400K deaths. In the absence of effective vaccines
and therapeutics, immunity against SARS-CoV-2 is a main mechanism of protection against SARS-CoV-2
(re)infection. Our recent studies of convalescent serum samples revealed that their levels of neutralization
capacity vary greatly (over 100-fold) and only a small subset has high neutralization capacity. Because viral
neutralization assays are inherently low throughput, it is unrealistic to apply it to a high-risk population such as
hospital workers in a timely manner. Unfortunately, there is only moderate correlation between the
neutralization capacity and the level of anti-SARS-CoV-2 antibody levels determined using standard ELISA.
Clearly, we still do not understand what types of antibodies contribute to viral neutralization. Our overarching
hypothesis to be tested in this project is that by examining the antibody profile in patient serum more deeply
and quantitatively in terms of antigens, epitopes and antibody types, we will be able to identify quantitative
predictive markers for viral neutralization. To this end, we will develop multiplex assay for SARS-CoV-2
serology that will enable us to deeply characterize the antibody profile. We will then develop a predictive
algorithm by utilizing. We have assembled a team of experts with truly complementary skills in antibody
characterization, virology and data mining. We have access to a large number of convalescent serum samples,
which will enable us to critically validate our technology. We will expeditiously execute the following aims. (1)
We will develop multiplex serology assay for SARS-CoV-2 that can profile up to 15 antibody-antigen
interactions in a single reaction. The main technical innovation is the introduction of multi-dimensional flow
cytometry. We will produce multiple antigens including Spike, receptor-binding domain and nucleocapsid
protein, and their natural and designed variants. We will refine and validate the assay using a large panel of
convalescent serum samples. (2) We will develop an improved viral neutralization assay to better quantify the
neutralization capacity. (3) We will develop a predictive algorithm for neutralization capacity that utilizes the
antibody profiles from our multiplex assay. This analysis will identify serology parameters that contribute to
neutralization. The end products of this project will include a high-throughput serology assay that gives far-
richer antibody profiles than the current standard accompanied with an accurate predictive algorithm. Together,
this platform will help advance a fundamental understanding of SARS-CoV-2 infection as well as the
development of vaccines and therapeutics against this formidable pathogen.
摘要
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Rapid and Sensitive Microfluidics-Based Tool for Seroprevalence Immunity Assessment of COVID-19 and Vaccination-Induced Humoral Antibody Response at the Point of Care.
- DOI:10.3390/bios12080621
- 发表时间:2022-08-10
- 期刊:
- 影响因子:5.4
- 作者:Rajsri, Kritika Srinivasan;McRae, Michael P.;Simmons, Glennon W.;Christodoulides, Nicolaos J.;Matz, Hanover;Dooley, Helen;Koide, Akiko;Koide, Shohei;McDevitt, John T.
- 通讯作者:McDevitt, John T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHOHEI KOIDE其他文献
SHOHEI KOIDE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHOHEI KOIDE', 18)}}的其他基金
Novel biologics platform for targeting tumors driven by intracellular oncoproteins
用于靶向细胞内癌蛋白驱动的肿瘤的新型生物制剂平台
- 批准号:
10356663 - 财政年份:2021
- 资助金额:
$ 46.61万 - 项目类别:
Transport Mechanisms and Inhibition of Efflux Pumps in Pathogenic Organisms
病原生物外排泵的转运机制和抑制
- 批准号:
10344321 - 财政年份:2021
- 资助金额:
$ 46.61万 - 项目类别:
Novel biologics platform for targeting tumors driven by intracellular oncoproteins
用于靶向细胞内癌蛋白驱动的肿瘤的新型生物制剂平台
- 批准号:
10533364 - 财政年份:2021
- 资助金额:
$ 46.61万 - 项目类别:
Transport Mechanisms and Inhibition of Efflux Pumps in Pathogenic Organisms
病原生物外排泵的转运机制和抑制
- 批准号:
10531273 - 财政年份:2021
- 资助金额:
$ 46.61万 - 项目类别:
Probing RAS-mediated signaling mechanisms with monobody inhibitors
使用单体抑制剂探索 RAS 介导的信号传导机制
- 批准号:
9977135 - 财政年份:2018
- 资助金额:
$ 46.61万 - 项目类别:
Probing RAS-mediated signaling mechanisms with monobody inhibitors
使用单体抑制剂探索 RAS 介导的信号传导机制
- 批准号:
10220892 - 财政年份:2018
- 资助金额:
$ 46.61万 - 项目类别:
Probing RAS-mediated signaling mechanisms with monobody inhibitors
使用单体抑制剂探索 RAS 介导的信号传导机制
- 批准号:
9751810 - 财政年份:2018
- 资助金额:
$ 46.61万 - 项目类别:
Probing RAS-mediated signaling mechanisms with monobody inhibitors
使用单体抑制剂探索 RAS 介导的信号传导机制
- 批准号:
9384266 - 财政年份:2017
- 资助金额:
$ 46.61万 - 项目类别:
Probing RAS-mediated Signaling with Monobody Inhibitors
使用单体抑制剂探测 RAS 介导的信号转导
- 批准号:
10530818 - 财政年份:2017
- 资助金额:
$ 46.61万 - 项目类别:
Probing RAS-mediated Signaling with Monobody Inhibitors
使用单体抑制剂探测 RAS 介导的信号转导
- 批准号:
10666670 - 财政年份:2017
- 资助金额:
$ 46.61万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 46.61万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 46.61万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 46.61万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 46.61万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 46.61万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 46.61万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 46.61万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 46.61万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 46.61万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 46.61万 - 项目类别:
Continuing Grant














{{item.name}}会员




